Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T22:58:07.144Z Has data issue: false hasContentIssue false

ALTERNATING CIRCULAR SUMS OF BINOMIAL COEFFICIENTS

Published online by Cambridge University Press:  13 April 2022

WENCHANG CHU*
Affiliation:
School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou, Henan, PR China Current address: Department of Mathematics and Physics, University of Salento (PO Box 193), 73100 Lecce, Italy

Abstract

By combining the generating function approach with the Lagrange expansion formula, we evaluate, in closed form, two multiple alternating sums of binomial coefficients, which can be regarded as alternating counterparts of the circular sum evaluation discovered by Carlitz [‘The characteristic polynomial of a certain matrix of binomial coefficients’, Fibonacci Quart. 3(2) (1965), 81–89].

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, A. T. and Rouse, J. A., ‘Recounting binomial Fibonacci identities’, in: Applications of Fibonacci Numbers: Volume 9: Proceedings of The Tenth International Research Conference on Fibonacci Numbers and Their Applications (ed. Howard, F. T.) (Springer, Dordrecht, 2004), 2528.Google Scholar
Carlitz, L., ‘The characteristic polynomial of a certain matrix of binomial coefficients’, Fibonacci Quart. 3(2) (1965), 8189.Google Scholar
Chu, W., ‘Derivative inverse series relations and Lagrange expansion formula’, Int J. Number Theory 9(4) (2013), 10011013.CrossRefGoogle Scholar
Chu, W., ‘Bell polynomials and nonlinear inverse relations’, Electron. J. Combin. 28(4) (2021), Article no. P4.24.CrossRefGoogle Scholar
Chu, W., ‘Circular sums of binomial coefficients’, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115(2) (2021), Article no. 92.Google Scholar
Comtet, L., Advanced Combinatorics (ed. Reidel, D.) (Springer, Dordrecht, 1974).CrossRefGoogle Scholar
Lagrange, J. L., ‘Nouvelle méthode pour résoudre les équations littérales par le moyen des séries’, Mém. Acad. R. Sci. Belles-Lett. Berl. 24 (1770), 251326.Google Scholar
Mikic, J., ‘A proof of the curious binomial coefficient identity which is connected with the Fibonacci numbers’, Open Access J. Math. Theor. Phys. 1(1) (2017), 17.CrossRefGoogle Scholar
Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences (OEIS). http://oeis.org/.Google Scholar