No CrossRef data available.
Article contents
ALTERNATING CIRCULAR SUMS OF BINOMIAL COEFFICIENTS
Published online by Cambridge University Press: 13 April 2022
Abstract
By combining the generating function approach with the Lagrange expansion formula, we evaluate, in closed form, two multiple alternating sums of binomial coefficients, which can be regarded as alternating counterparts of the circular sum evaluation discovered by Carlitz [‘The characteristic polynomial of a certain matrix of binomial coefficients’, Fibonacci Quart. 3(2) (1965), 81–89].
Keywords
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 106 , Issue 3 , December 2022 , pp. 385 - 395
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.
References
Benjamin, A. T. and Rouse, J. A., ‘Recounting binomial Fibonacci identities’, in: Applications of Fibonacci Numbers: Volume 9: Proceedings of The Tenth International Research Conference on Fibonacci Numbers and Their Applications (ed. Howard, F. T.) (Springer, Dordrecht, 2004), 25–28.Google Scholar
Carlitz, L., ‘The characteristic polynomial of a certain matrix of binomial coefficients’, Fibonacci Quart. 3(2) (1965), 81–89.Google Scholar
Chu, W., ‘Derivative inverse series relations and Lagrange expansion formula’, Int J. Number Theory 9(4) (2013), 1001–1013.CrossRefGoogle Scholar
Chu, W., ‘Bell polynomials and nonlinear inverse relations’, Electron. J. Combin. 28(4) (2021), Article no. P4.24.CrossRefGoogle Scholar
Chu, W., ‘Circular sums of binomial coefficients’, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115(2) (2021), Article no. 92.Google Scholar
Comtet, L., Advanced Combinatorics (ed. Reidel, D.) (Springer, Dordrecht, 1974).CrossRefGoogle Scholar
Lagrange, J. L., ‘Nouvelle méthode pour résoudre les équations littérales par le moyen des séries’, Mém. Acad. R. Sci. Belles-Lett. Berl. 24 (1770), 251–326.Google Scholar
Mikic, J., ‘A proof of the curious binomial coefficient identity which is connected with the Fibonacci numbers’, Open Access J. Math. Theor. Phys. 1(1) (2017), 1–7.CrossRefGoogle Scholar
Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences (OEIS). http://oeis.org/.Google Scholar