Published online by Cambridge University Press: 26 November 2013
Using the method of exponential dichotomies, we establish a new existence and uniqueness theorem for almost automorphic solutions of differential equations with piecewise constant argument of the form $$\begin{eqnarray*}{x}^{\prime } (t)= A(t)x(t)+ B(t)x(\lfloor t\rfloor )+ f(t), \quad t\in \mathbb{R} ,\end{eqnarray*}$$
$\lfloor \cdot \rfloor $ denotes the greatest integer function, and
$A(t), B(t): \mathbb{R} \rightarrow { \mathbb{R} }^{q\times q} $,
$f(t): \mathbb{R} \rightarrow { \mathbb{R} }^{q} $ are all almost automorphic.