Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T10:25:09.966Z Has data issue: false hasContentIssue false

THE AKIYAMA MEAN-MEDIAN MAP HAS UNBOUNDED TRANSIT TIME AND DISCONTINUOUS LIMIT

Published online by Cambridge University Press:  23 November 2022

JONATHAN HOSEANA*
Affiliation:
Center for Mathematics and Society, Department of Mathematics, Parahyangan Catholic University, Bandung 40141, Indonesia

Abstract

Open conjectures state that, for every $x\in [0,1]$, the orbit $(x_n)_{n=1}^\infty $ of the mean-median recursion

$$ \begin{align*}x_{n+1}=(n+1)\cdot\operatorname{\mathrm{median}}(x_1,\ldots,x_{n})-(x_1+\cdots+x_n),\quad n\geqslant 3,\end{align*} $$

with initial data $(x_1,x_2,x_3)=(0,x,1)$, is eventually constant, and that its transit time and limit functions (of x) are unbounded and continuous, respectively. In this paper, we prove that for the slightly modified recursion

$$ \begin{align*}x_{n+1}=n\cdot\operatorname{\mathrm{median}}(x_1,\ldots,x_{n})-(x_1+\cdots+x_n),\quad n\geqslant 3,\end{align*} $$

first suggested by Akiyama, the transit time function is unbounded but the limit function is discontinuous.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, S., Private communication, 2019.Google Scholar
Blizard, W. D., ‘Multiset theory’, Notre Dame J. Form. Log. 30 (1989), 3666.Google Scholar
Cellarosi, F. and Munday, S., ‘On two conjectures for M&m sequences’, J. Difference Equ. Appl. 22 (2016), 428440.CrossRefGoogle Scholar
Chamberland, M. and Martelli, M., ‘The mean-median map’, J. Difference Equ. Appl. 13 (2007), 577583.10.1080/10236190701264719CrossRefGoogle Scholar
Hoseana, J., The Mean-Median Map, MSc Dissertation, Queen Mary University of London, 2015.Google Scholar
Hoseana, J., The Mean-Median Map, PhD Thesis, Queen Mary University of London, 2019.Google Scholar
Hoseana, J. and Vivaldi, F., ‘Geometrical properties of the mean-median map’, J. Comput. Dyn. 7 (2020), 83121.10.3934/jcd.2020004CrossRefGoogle Scholar
Hoseana, J. and Vivaldi, F., ‘On the unboundedness of the transit time of mean-median orbits’, J. Difference Equ. Appl. 9–10 (2020), 13981421.10.1080/10236198.2020.1842385CrossRefGoogle Scholar
Shultz, H. S. and Shiflett, R. C., ‘M&m sequences’, College Math. J. 36 (2005), 191198.CrossRefGoogle Scholar
Vivaldi, F., ‘The mean-median map’, in: 2019–20 MATRIX Annals (eds. Wood, D. R., de Gier, J., Praeger, C. E. and Tao, T.) (Springer, Cham, 2021), 725727.10.1007/978-3-030-62497-2_57CrossRefGoogle Scholar