Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T08:30:59.209Z Has data issue: false hasContentIssue false

ADDITIVE COMPLETION OF THIN SETS

Published online by Cambridge University Press:  15 November 2023

JIN-HUI FANG
Affiliation:
School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, PR China e-mail: [email protected]
CSABA SÁNDOR*
Affiliation:
Institute of Mathematics, Budapest University of Technology and Economics, Egry József utca 1, 1111 Budapest, Hungary and Department of Computer Science and Information Theory, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary and MTA-BME Lendület Arithmetic Combinatorics Research Group, ELKH, Műegyetem rkp. 3., H-1111 Budapest, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Two sets $A,B$ of positive integers are called exact additive complements if $A+B$ contains all sufficiently large integers and $A(x)B(x)/x\rightarrow 1$. For $A=\{a_1<a_2<\cdots \}$, let $A(x)$ denote the counting function of A and let $a^*(x)$ denote the largest element in $A\bigcap [1,x]$. Following the work of Ruzsa [‘Exact additive complements’, Quart. J. Math. 68 (2017) 227–235] and Chen and Fang [‘Additive complements with Narkiewicz’s condition’, Combinatorica 39 (2019), 813–823], we prove that, for exact additive complements $A,B$ with ${a_{n+1}}/ {na_n}\rightarrow \infty $,

$$ \begin{align*}A(x)B(x)-x\geqslant \frac{a^*(x)}{A(x)}+o\bigg(\frac{a^*(x)}{A(x)^2}\bigg) \quad\mbox{as } x\rightarrow +\infty.\end{align*} $$

We also construct exact additive complements $A,B$ with ${a_{n+1}}/{na_n}\rightarrow \infty $ such that

$$ \begin{align*}A(x)B(x)-x\leqslant \frac{a^*(x)}{A(x)}+(1+o(1))\bigg(\frac{a^*(x)}{A(x)^2}\bigg)\end{align*} $$

for infinitely many positive integers x.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Two sets $A,B$ of positive integers are called additive complements, if $A+B$ contains all sufficiently large integers. Let $A=\{a_1<a_2<\cdots \}$ be a set of positive integers. Denote by $A(x)$ the counting function of A and by $a^*(x)$ the largest element in $A\bigcap [1,x]$ . If additive complements $A,B$ satisfy

$$ \begin{align*} \frac{A(x)B(x)}{x}\rightarrow1,\end{align*} $$

then we call such $A,B$ exact additive complements. In 2001, Ruzsa [Reference Ruzsa2] introduced the following notation which is powerful for the proof of additive complements. Let ${m>a_1}$ be an integer and let $k=A(m)$ . Denote by $L(m)$ the smallest number l for which there are integers $b_1,\ldots ,b_l$ such that the numbers $a_i+b_j,1\leqslant i\leqslant k, 1\leqslant j\leqslant l$ , contain every residue modulo m. Obviously, $L(m)\geqslant m/k$ .

Theorem 1.1 (Ruzsa [Reference Ruzsa2]).

If

(1.1) $$ \begin{align} \frac{a_{n+1}}{na_n}\rightarrow\infty,\end{align} $$

then A has an exact complement.

Theorem 1.2 (Ruzsa [Reference Ruzsa2]).

Let A be a set satisfying ${A(2x)}/{A(x)}\rightarrow 1$ . The following are equivalent.

  1. (a) A has an exact complement.

  2. (b) $A(m)L(m)/m\rightarrow 1$ .

  3. (c) There is a sequence $m_1\kern1.5pt{<}\kern1.5pt m_2\kern1.5pt{<}\kern1.2pt\cdots $ of positive integers such that ${A(m_{i+1})/ A(m_i)\kern1.2pt{\rightarrow}\kern1.2pt 1}$ and $A(m_i)L(m_i)/m_i\rightarrow 1$ .

Theorem 1.3 (Ruzsa [Reference Ruzsa3]).

For exact additive complements $A,B$ with ${A(2x)}/ {A(x)}\rightarrow 1$ ,

$$ \begin{align*} A(x)B(x)-x\geqslant (1+o(1))\frac{a^*(x)}{A(x)} \quad\mbox{as } x\rightarrow +\infty. \end{align*} $$

In 2019, Chen and Fang [Reference Chen and Fang1] improved Theorem 1.3 by removing the exact condition. Chen and Fang also showed in [Reference Chen and Fang1] that Theorem 1.3 is the best possible.

Theorem 1.4 (Chen and Fang [Reference Chen and Fang1]).

There exist exact additive complements $A,B$ with ${A(2x)}/{A(x)}\rightarrow 1$ such that

$$ \begin{align*} A(x)B(x)-x\leqslant (1+o(1))\frac{a^*(x)}{A(x)}\end{align*} $$

for infinitely many positive integers x.

In this paper, under condition (1.1) from [Reference Ruzsa2], we obtain the following result.

Theorem 1.5. For exact additive complements $A,B$ with (1.1),

(1.2) $$ \begin{align} A(x)B(x)-x\geqslant \frac{a^*(x)}{A(x)}+o\bigg( \frac{a^*(x)}{A(x)^2}\bigg) \quad \mbox{as}\ x\rightarrow +\infty.\end{align} $$

Moreover, we also show that ${a^*(x)}/{A(x)^2}$ is the best possible.

Theorem 1.6. There exist exact additive complements $A,B$ with (1.1) such that

(1.3) $$ \begin{align} \liminf_{x\to \infty }\frac{A(x)B(x)-x-\frac{a^*(x)}{A(x)}}{\frac{a^*(x)}{A(x)^2}}\leqslant 1. \end{align} $$

2 Proofs of the main results

Let

$$ \begin{align*}\sigma (x, n)=|\{ (a, b) : a+b=n, a, b\leqslant x, a\in A, b\in B\} |\end{align*} $$

and

$$ \begin{align*}\delta (x, n)=|\{ (a, b) : b-a=n, a, b\leqslant x, a\in A, b\in B\} |.\end{align*} $$

The ideas used in the proofs of the main results come from [Reference Chen and Fang1Reference Ruzsa3]. We use the following lemma of Ruzsa in the proof of Theorem 1.5.

Lemma 2.1 [Reference Ruzsa3, Lemma 2.1].

Let U and V be finite sets of integers and let

$$ \begin{align*}\sigma (n)=|\{ (u,v) : u\in U, v\in V, u+v=n\} |\end{align*} $$

and

$$ \begin{align*}\delta (n)= |\{ (u,v) : u\in U, v\in V, v-u=n\} |.\end{align*} $$

Then

$$ \begin{align*}\sum_{\sigma (n)>1} (\sigma (n)-1) \geqslant \frac 1{|U|} \sum_{\delta (n)>1} (\delta (n)-1).\end{align*} $$

Proof of Theorem 1.5.

Assume the contrary. Suppose that (1.2) does not hold. Then there exist a positive number $\delta _0(<1)$ and a sequence $x_1<x_2<\cdots <x_k<\cdots $ such that

(2.1) $$ \begin{align} A(x_k)B(x_k)-x_k\leqslant \frac{a^*(x_k)}{A(x_k)}-\delta _0\frac{a^*(x_k)}{A(x_k)^2}. \end{align} $$

We know that

$$ \begin{align*} A(x_k)B(x_k)-x_k&=\sum_{\substack{a\leqslant x_k, b\leqslant x_k\\ a\in A, b\in B}} 1 -x_k=\sum_{n=1}^{2x_k} \sigma (x_k, n)-x_k \\ & =\sum_{\substack{n=1\\ \sigma (x_k, n)\geqslant 1}}^{x_k} (\sigma(x_k, n)-1)+ \sum_{\substack{n=x_k+1\\ \sigma (x_k, n)\geqslant 1}}^{2x_k} \sigma (x_k, n) \\ & = \sum_{\substack{n=1\\ \sigma (x_k, n)\geqslant 1}}^{2x_k} (\sigma (x_k, n)-1) + \sum_{\substack{n=x_k+1\\ \sigma (x_k, n)\geqslant 1} }^{2x_k} 1 \\ & =\sum_{\substack{n=1\\ \sigma (x_k,n)>1}}^{2x_k} (\sigma (x_k, n)-1) + \sum_{\substack{n=x_k+1\\ \sigma (x_k, n)\geqslant 1} }^{2x_k} 1. \end{align*} $$

Since $a^*(x_k)\in A$ and $a^*(x_k)+b>x_k$ for all $b\in B$ with $x_k-a^*(x_k)<b\leqslant x_k$ ,

$$ \begin{align*}\sum_{\substack{n=x_k+1\\ \sigma (x_k, n)\geqslant 1} }^{2x_k} 1\geqslant B(x_k)-B(x_k-a^*(x_k)).\end{align*} $$

Thus,

$$ \begin{align*} A(x_k)B(x_k)-x_k\geqslant \sum_{\substack{n\\ \sigma(x_k, n)>1} } (\sigma (x_k,n)-1)+B(x_k)-B(x_k-a^*(x_k)).\end{align*} $$

From Ruzsa’s Lemma 2.1,

(2.2) $$ \begin{align} A(x_k)B(x_k)-x_k\geqslant \frac{1}{A(x_k)}\sum_{\substack{n\\ \delta(x_k, n)>1} } (\delta (x_k,n)-1)+B(x_k)-B(x_k-a^*(x_k)).\end{align} $$

Let

$$ \begin{align*}D=\{(a,b) : a\in A, b\in B, a\leqslant b\leqslant x_k-a^*(x_k) \}.\end{align*} $$

Then

(2.3) $$ \begin{align} \sum_{\substack{n\\ \delta(x_k, n)>1} } (\delta (x_k,n)-1)=\sum_{\substack{n\\ \delta(x_k, n)\geqslant 1} } (\delta (x_k,n)-1)\geqslant |D|-(x_k-a^*(x_k)+1). \end{align} $$

Now we need a lower bound for $|D|$ . We consider the following two cases.

Case 1: $a^*(x_k)>\frac 12x_k$ for infinitely many k. By (1.1),

$$ \begin{align*}A\bigg(\frac{\delta _0}{5}\frac{a^*(x_k)}{A(x_k)}\bigg)=A(x_k)-1 \quad\mbox{for all sufficiently large integers } k.\end{align*} $$

Thus, in this case, by Theorem 1.3 and $A(x)B(x)/x\rightarrow 1$ ,

$$ \begin{align*} |D|&\geqslant \sum_{\substack{\frac{\delta _0}{5}\frac{a^*(x_k)}{A(x_k)}\leqslant b\leqslant x_k-a^*(x_k)\\ b\in B}} A(b) \geqslant A\bigg(\frac{\delta _0}{5}\frac{a^*(x_k)}{A(x_k)}\bigg)\bigg(B(x_k-a^*(x_k))-B\bigg(\frac{\delta _0}{5}\frac{a^*(x_k)}{A(x_k)}\bigg)\bigg) \\ &= (A(x_k)-1)B(x_k-a^*(x_k))-A\bigg(\frac{\delta _0}{5}\frac{a^*(x_k)}{A(x_k)}\bigg)B\bigg(\frac{\delta _0}{5}\frac{a^*(x_k)}{A(x_k)}\bigg) \\ &= A(x_k)B(x_k)+A(x_k)(B(x_k-a^*(x_k))-B(x_k))-B(x_k-a^*(x_k)) \\ & \quad -A\bigg(\frac{\delta _0}{5}\frac{a^*(x_k)}{A(x_k)}\bigg)B\bigg(\frac{\delta _0}{5}\frac{a^*(x_k)}{A(x_k)}\bigg) \\ &\geqslant x_k+\bigg(1-\frac{\delta _0}{4}\bigg)\frac{a^*(x_k)}{A(x_k)}+A(x_k)(B(x_k-a^*(x_k))-B(x_k))-B(a^*(x_k))-\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)} \\ &\geqslant x_k+\bigg(1-\frac{\delta _0}{4}\bigg)\frac{a^*(x_k)}{A(x_k)}+A(x_k)(B(x_k-a^*(x_k))-B(x_k)) \\&\quad -\bigg(1+\frac{\delta _0}{4}\bigg)\frac{a^*(x_k)}{A(x_k)}-\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)} \\ &= x_k-\frac{3\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}+A(x_k)(B(x_k-a^*(x_k))-B(x_k)) \end{align*} $$

for sufficiently large k. It follows from (2.2) and (2.3) that

$$ \begin{align*} A(x_k)B(x_k)-x_k &\geqslant \frac{x_k}{A(x_k)}-\frac{3\delta _0}{4}\frac{a^*(x_k)}{A(x_k)^2} +B(x_k-a^*(x_k))-B(x_k)-\frac{x_k-a^*(x_k)+1}{A(x_k)} \\ & \quad +B(x_k)-B(x_k-a^*(x_k) )\\ &>\frac{a^*(x_k)}{A(x_k)}-\delta _0\frac{a^*(x_k)}{A(x_k)^2} \end{align*} $$

for sufficiently large k, which is in contradiction with (2.1).

Case 2: $a^*(x_k)\leqslant \tfrac 12x_k$ for infinitely many k. By (1.1),

$$ \begin{align*}A\bigg(\frac{\delta_0}{4}\frac{a^*(x_k)}{A(x_k)}\bigg)=A(x_k)-1 \quad\mbox{for all sufficiently large integers } k.\end{align*} $$

Thus, in this case, by Theorem 1.3 and $A(x)B(x)/x\rightarrow 1$ ,

$$ \begin{align*} |D| & \geqslant \sum_{\substack{\frac{\delta _0}{2}\frac{a^*(x_k)}{A(x_k)}<b\leqslant x_k-a^*(x_k)\\ b\in B}} A\bigg(b-\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}\bigg) \\ & =\sum_{\substack{\frac{\delta _0}{2}\frac{a^*(x_k)}{A(x_k)}<b<a^*(x_k)+\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}\\ b\in B}} A\bigg(b-\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}\bigg)+ \sum_{\substack{a^*(x_k)+\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}\leqslant b\leqslant x_k-a^*(x_k)\\b\in B}} A\bigg(b-\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}\bigg) \\ & =(A(x_k)-1)\bigg(B\bigg(a^*(x_k)+\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}\bigg)-B\bigg(\frac{\delta _0}{2}\frac{a^*(x_k)}{A(x_k)}\bigg)\bigg) \\ &\quad +A(x_k)\bigg(B( x_k-a^*(x_k))-B\bigg(a^*(x_k)+\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}\bigg)\bigg) \\ & =A\bigg(a^*(x_k)+\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}\bigg)B\bigg(a^*(x_k)+\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}\bigg)-B\bigg(a^*(x_k)+\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}\bigg) \\ &\quad -A\bigg(\frac{\delta _0}{2}\frac{a^*(x_k)}{A(x_k)}\bigg)B\bigg(\frac{\delta _0}{2}\frac{a^*(x_k)}{A(x_k)}\bigg)+A(x_k)B(x_k)+A(x_k)(B(x_k-a^*(x_k))-B(x_k)) \\ &\quad -A\bigg(a^*(x_k)+\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}\bigg)B\bigg(a^*(x_k)+\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}\bigg) \\ & =A(x_k)B(x_k)+A(x_k)(B(x_k-a^*(x_k))-B(x_k))-B\bigg(a^*(x_k)+\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}\bigg) \\ &\quad -A\bigg(\frac{\delta _0}{2}\frac{a^*(x_k)}{A(x_k)}\bigg)B\bigg(\frac{\delta _0}{2}\frac{a^*(x_k)}{A(x_k)}\bigg) \\& \geqslant x_k+\bigg(1-\frac{\delta _0}{10}\bigg)\frac{a^*(x_k)}{A(x_k)}+A(x_k)(B(x_k-a^*(x_k))-B(x_k)) \\ &\quad -\bigg(1+\frac{\delta _0}{10}\bigg)\frac{a^*(x_k)+\frac{\delta _0}{4}\frac{a^*(x_k)}{A(x_k)}}{A(x_k)} -\frac{3\delta _0}{5}\frac{a^*(x_k)}{A(x_k)} \\ &\geqslant x_k-\frac{9\delta _0}{10}\frac{a^*(x_k)}{A(x_k)}+A(x_k)(B(x_k-a^*(x_k))-B(x_k)), \end{align*} $$

for sufficiently large k. It follows from (2.2) and (2.3) that

$$ \begin{align*} A(x_k)B(x_k)-x_k &\geqslant \frac{x_k}{A(x_k)}-\frac{9\delta _0}{10}\frac{a^*(x_k)}{A(x_k)^2}+B(x_k-a^*(x_k))-B(x_k)-\frac{x_k-a^*(x_k)+1}{A(x_k)} \\ &\quad +B(x_k)-B(x_k-a^*(x_k))\\ &> \frac{a^*(x_k)}{A(x_k)}-\delta_0\frac{a^*(x_k)}{A(x_k)^2} \end{align*} $$

for sufficiently large k, which is in contradiction with (2.1).

This completes the proof of Theorem 1.5.

Proof of Theorem 1.6.

Let $a_1=1$ and $a_2=4$ . We construct the sequence $a_3,a_4,\dots $ with

(2.4) $$ \begin{align}a_{n+1}\gg n^4a_n\end{align} $$

and a sequence $n_1,n_2,\dots $ such that $a_1,a_2,\dots ,a_{n_k}$ form a complete residue system modulo $n_k$ and $n_k\mid a_{n_k}$ . We get such a sequence by a greedy algorithm: let $n_1=2$ , and if $n_1,n_2,\dots ,n_k$ are already defined, then let $n_{k+1}=a_{n_k}$ . Since $a_1,\dots ,a_{n_k}$ are distinct residues modulo $a_{n_k}$ , we can choose $a_{n_k+1},\dots ,a_{n_{k+1}}$ such that $a_{m+1}\gg m^4a_m$ for ${m=n_k,\ldots , n_{k+1}-1}$ , $a_{n_k}\mid a_{a_{n_k}}$ and $a_1,\dots ,a_{n_{k+1}}$ form a complete residue system modulo $n_{k+1}$ .

For every positive integer k, we further take

$$ \begin{align*} b_1=n_k, \quad b_2=2n_k, \dots, b_{{a_{n_k}}/{n_k}}=\frac{a_{n_k}}{n_k}\cdot n_k.\end{align*} $$

Then $a_i+b_j$ for $1\leqslant i\leqslant p, 1\leqslant j\leqslant {a_{n_k}}/{n_k}$ , form a complete residue system modulo $a_{n_k}$ . From the definition of $L(a_{n_k})$ ,

(2.5) $$ \begin{align}L(a_{n_k})=\frac{a_{n_k}}{n_k}.\end{align} $$

For the set $A=\{a_k\}_{k=1}^{\infty }$ and every positive integer k, define $q_k$ by

(2.6) $$ \begin{align} q_k=\bigg\lfloor\frac{a_{k+1}}{k^4a_k}\bigg\rfloor, \quad \mbox{that is},\quad q_k\cdot k^4a_k<a_{k+1}\leqslant (q_k+1)\cdot k^4a_k.\end{align} $$

Define the same sets $A,B$ as in [Reference Ruzsa2, Theorem 3] (replacing $m_k$ by $a_k$ ) and write ${A_k=A\bigcap [1,a_k]}$ . Take $U_k\subseteq [1,a_k]$ so that $|U_k|=L(a_k)$ and $A_k+U_k$ contains every residue module $a_k$ . Let

$$ \begin{align*} V_k=U_k+\bigg\{(q_k-1)a_k,q_ka_k,(q_k+1)a_k,\ldots, \bigg\lfloor \frac{q_{k+1}a_{k+1}}{a_k}\bigg\rfloor a_k\bigg\} \quad\mbox{and}\quad B=\bigcup_{k=1}^\infty V_k.\end{align*} $$

Let $q_ka_k\leqslant x\leqslant q_{k+1}a_{k+1}$ . The sequence $\{q_k\}_{k=1}^{\infty }$ defined in (2.6) is increasing to infinity by (2.4) and $A(q_ka_k)\sim A(a_k)$ . (In fact, $A(q_ka_k)=k=A(a_k)$ by (2.6).) By the same proof as in [Reference Ruzsa2, Theorem 3], $A,B$ are additive complements and $A(x)B(x)\sim x$ . Thus, the set A with (2.4) has an exact complement B. Obviously, such an A with (2.4) satisfies (1.1).

Finally, we prove that (1.3) holds for infinitely many $x_k$ . For x with $q_ka_k\leqslant x<(q_{k+1}-1)a_{k+1}$ , we have $k\leqslant A(x)\leqslant k+1$ and

(2.7) $$ \begin{align} B(x)\leqslant \bigg(\bigg\lfloor\frac{x}{a_k}\bigg\rfloor-q_k+2\bigg)L(a_k) +\sum_{i=2}^k\bigg(\bigg\lfloor\frac{q_ia_i}{a_{i-1}}\bigg\rfloor-q_{i-1}+2\bigg)L(a_{i-1}). \end{align} $$

By Theorem 1.2(b), $L(a_{k-1})\leqslant {2a_{k-1}}/{(k-1)} \mbox { for large } k$ . From (2.6),

$$ \begin{align*} \sum_{i=2}^k\bigg(\bigg\lfloor\frac{q_ia_i}{a_{i-1}}\bigg\rfloor-q_{i-1}+2\bigg)L(a_{i-1}) \leqslant (k-1)\frac{2q_ka_k}{k-1}=O(q_ka_k)=O\bigg(\frac{a_{k+1}}{(k+1)^4}\bigg).\end{align*} $$

It is easy to see that, for large k,

$$ \begin{align*}(q_k-2)L(a_k)\leqslant 2\frac{q_ka_k}{k}=O\bigg(\frac{a_{k+1}}{(k+1)^5}\bigg).\end{align*} $$

It follows from (2.7) that

(2.8) $$ \begin{align} B(x)\leqslant \frac{x}{a_k}L(a_k)+O\bigg(\frac{a_{k+1}}{(k+1)^4}\bigg).\end{align} $$

Choose $x_k=a_{n_k+1}$ , where $n_k$ is the index satisfying (2.5). Then by (2.8),

$$ \begin{align*} A(x_k)B(x_k)-x_k-\frac{a^*(x_k)}{A(x_k)} &\leqslant(n_k+1)\frac{x_k}{n_k}-x_k-\frac{x_k}{n_k+1} +O\bigg(\frac{x_k}{(n_k+1)^3}\bigg)\\ &=\frac{x_k}{A(x_k)^2}+O\bigg(\frac{x_k}{A(x_k)^3}\bigg). \end{align*} $$

This completes the proof of Theorem 1.6.

Footnotes

The first author is supported by the National Natural Science Foundation of China, Grant No. 12171246 and the Natural Science Foundation of Jiangsu Province, Grant No. BK20211282. The second author is supported by the NKFIH Grant No. K129335 and the National Research, Development and Innovation Fund Grant No. KKP144059 ‘Fractal geometry and applications’.

References

Chen, Y. G. and Fang, J. H., ‘Additive complements with Narkiewicz’s condition’, Combinatorica 39 (2019), 813823.CrossRefGoogle Scholar
Ruzsa, I. Z., ‘Additive completion of lacunary sequences’, Combinatorica 21 (2001), 279291.CrossRefGoogle Scholar
Ruzsa, I. Z., ‘Exact additive complements’, Q. J. Math. 68 (2017), 227235.Google Scholar