No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
This paper is an endeavour to improve upon the work begun in an earlier paper with the same title. We prove a general theorem on the summability |R, exp((log ω)β+1), ρ| of the series ∑ {sn(x)−s}/n, where {sn(x)} is the sequence of partial sums at a point x of the Fourier series of a Lebesgue integrable 2π-periodic function and s is a suitable constant. While the theorem improves upon the main result contained in the previous paper, corollaries to it include recent results due to Chandra and Yadava.