Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T00:53:44.478Z Has data issue: false hasContentIssue false

SUBADDITIVITY OF AN INTEGRAL TRANSFORM FOR POSITIVE OPERATORS IN HILBERT SPACES

Published online by Cambridge University Press:  08 November 2022

SILVESTRU SEVER DRAGOMIR*
Affiliation:
Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne, Victoria 3011, Australia and DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa
*

Abstract

For a continuous and positive function $w(\lambda )$ , $\lambda>0$ and $\mu $ a positive measure on $(0,\infty )$ , we consider the integral transform

$$ \begin{align*} \mathcal{D}( w,\mu ) ( T) :=\int_{0}^{\infty }w(\lambda) ( \lambda +T) ^{-1}\,d\mu ( \lambda ) , \end{align*} $$

where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among other things that if B, $A>0,$ then $\mathcal {D}( w,\mu ) $ is operator subadditive on $(0,\infty ) $ , that is,

$$ \begin{align*} \mathcal{D}( w,\mu ) ( A) +\mathcal{D}( w,\mu) ( B) \geq \mathcal{D}( w,\mu )(A+B). \end{align*} $$

From this, we derive that if $f:[0,\infty )\rightarrow \mathbb {R}$ is an operator monotone function on $[0,\infty )$ , then the function $[ f( t) -f( 0) ] t^{-1}$ is operator subadditive on $( 0,\infty ) .$ Also, if $f:[0,\infty )\rightarrow \mathbb {R}$ is an operator convex function on $[0,\infty )$ , then the function $[ f( t) -f( 0) -f_{+}^{\prime }( 0) t ] t^{-2}$ is operator subadditive on $( 0,\infty ) .$

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhatia, R., Matrix Analysis, Graduate Texts in Mathematics, 169 (Springer-Verlag, New York, 1997).10.1007/978-1-4612-0653-8CrossRefGoogle Scholar
Fujii, J. I. and Seo, Y., ‘On parametrized operator means dominated by power ones’, Sci. Math. 1 (1998), 301306.Google Scholar
Furuta, T., ‘Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation’, Linear Algebra Appl. 429 (2008), 972980.CrossRefGoogle Scholar
Furuta, T., ‘ Precise lower bound of $f(A)-f(B)$ for $A>B>0$ and non-constant operator monotone function $f$ on $\left[0,\infty \right)$ ’, J. Math. Inequal. 9(1) (2015), 4752.10.7153/jmi-09-04CrossRefGoogle Scholar
Löwner, K., ‘Über monotone Matrixfunktionen’, Math. Z. 38 (1934), 177216.10.1007/BF01170633CrossRefGoogle Scholar
Moslehian, M. S. and Najafi, H., ‘Around operator monotone functions’, Integral Equations Operator Theory 71 (2011), 575582.10.1007/s00020-011-1921-0CrossRefGoogle Scholar
Moslehian, M. S. and Najafi, H., ‘An extension of the Löwner–Heinz inequality’, Linear Algebra Appl. 437 (2012), 23592365.10.1016/j.laa.2012.05.027CrossRefGoogle Scholar
Paris, R. B., ‘Incomplete gamma and related functions: integral representations’, Digital Library of Mathematical Functions, National Institute of Standards and Technology (NIST). Available online at https://dlmf.nist.gov/8.6.Google Scholar