Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-04-25T12:40:12.774Z Has data issue: false hasContentIssue false

RADIAL ASYMPTOTICS OF GENERATING FUNCTIONS OF k-REGULAR SEQUENCES

Published online by Cambridge University Press:  13 September 2024

MICHAEL COONS*
Affiliation:
California State University, 400 West First Street, Chico, California 95929, USA
JOHN LIND
Affiliation:
California State University, 400 West First Street, Chico, California 95929, USA e-mail: [email protected]

Abstract

We give a new proof of a theorem of Bell and Coons [‘Transcendence tests for Mahler functions’, Proc. Amer. Math. Soc. 145(3) (2017), 1061–1070] on the leading order radial asymptotics of Mahler functions that are the generating functions of regular sequences. Our method allows us to provide a description of the oscillations whose existence was shown by Bell and Coons. This extends very recent results of Poulet and Rivoal [‘Radial behavior of Mahler functions’, Int. J. Number Theory, to appear].

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allouche, J.-P., Mendès France, M. and Peyrière, J., ‘Automatic Dirichlet series’, J. Number Theory 81(2) (2000), 359373.CrossRefGoogle Scholar
Allouche, J.-P., Shallit, J. and Stipulanti, M., ‘Combinatorics on words and generating Dirichlet series of automatic sequences’, Preprint, 2024, arXiv:2401.13524.Google Scholar
Bell, J. P. and Coons, M., ‘Transcendence tests for Mahler functions’, Proc. Amer. Math. Soc. 145(3) (2017), 10611070.CrossRefGoogle Scholar
Brent, R. P., Coons, M. and Zudilin, W., ‘Algebraic independence of Mahler functions via radial asymptotics’, Int. Math. Res. Not. IMRN 2016(2) (2016), 571603.Google Scholar
Coons, M., ‘(Non)Automaticity of number theoretic functions’, J. Théor. Nombres Bordeaux 22(2) (2010), 339352.CrossRefGoogle Scholar
Coons, M., ‘An asymptotic approach in Mahler’s method’, New Zealand J. Math. 47 (2017), 2742.Google Scholar
de Bruijn, N. G., ‘On Mahler’s partition problem’, Indag. Math. (N.S.) 10 (1948), 210220.Google Scholar
Dumas, P., ‘Récurrences mahlériennes, suites automatiques, études asymptotiques’, Thèse, Université de Bordeaux I, Talence, 1993.Google Scholar
Dumas, P. and Flajolet, P., ‘Asymptotique des récurrences mahlériennes: le cas cyclotomique’, J. Théor. Nombres Bordeaux 8(1) (1996), 130.CrossRefGoogle Scholar
Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products (Elsevier, Academic Press, Amsterdam, 2015).Google Scholar
Mahler, K., ‘On a special functional equation’, J. Lond. Math. Soc. (2) 15 (1940), 115123.CrossRefGoogle Scholar
Poulet, M. and Rivoal, T., ‘Radial behavior of Mahler functions’, Int. J. Number Theory, to appear.Google Scholar