No CrossRef data available.
Published online by Cambridge University Press: 26 December 2024
We consider the pseudorelativistic Hartree equation $$ \begin{align*} i\partial_t\psi=(\sqrt{-c^2\Delta +m^2c^4}-mc^2)\psi-(|x|^{-1}*|\psi|^2)\psi\quad \text{with } (t,x)\in\mathbb{R}\times\mathbb{R}^3, \end{align*} $$
which describes the dynamics of pseudorelativistic boson stars in the mean-field limit. We study the travelling waves of the form $\psi (t,x)=e^{it\mu }\varphi _{c}(x-vt)$, where
$v\in \mathbb {R}^3$ denotes the travelling velocity. We prove that
$\varphi _{c}$ converges strongly to the minimiser
$\varphi _{\infty }$ of the limit energy
$E_{\infty }(N)$ in
$H^1(\mathbb {R}^3)$ as the light speed
$c\to \infty $, where
$E_{\infty }(N)$ is the corresponding energy for the limit equation
$$ \begin{align*} -\frac{1}{2m}\Delta\varphi_{\infty}+i(v\cdot\nabla)\varphi_{\infty}-({|x|^{-1}}*|\varphi_{\infty}|^2)\varphi_{\infty}=-\lambda\varphi_{\infty}. \end{align*} $$
Since the operator $-\Delta $ is the classical kinetic operator, we call this the nonrelativistic limit. We prove the existence of the minimiser for the limit energy
$E_{\infty }(N)$ by using concentration-compactness arguments.
Q. Wang was partially supported by the National Natural Science Foundation of China (grant no. 11801519).