No CrossRef data available.
Published online by Cambridge University Press: 21 February 2022
We study the isomorphic structure of
$(\sum {\ell }_{q})_{c_{0}}\ (1< q<\infty )$
and prove that these spaces are complementably homogeneous. We also show that for any operator T from
$(\sum {\ell }_{q})_{c_{0}}$
into
${\ell }_{q}$
, there is a subspace X of
$(\sum {\ell }_{q})_{c_{0}}$
that is isometric to
$(\sum {\ell }_{q})_{c_{0}}$
and the restriction of T on X has small norm. If T is a bounded linear operator on
$(\sum {\ell }_{q})_{c_{0}}$
which is
$(\sum {\ell }_{q})_{c_{0}}$
-strictly singular, then for any
$\epsilon>0$
, there is a subspace X of
$(\sum {\ell }_{q})_{c_{0}}$
which is isometric to
$(\sum {\ell }_{q})_{c_{0}}$
with
$\|T|_{X}\|<\epsilon $
. As an application, we show that the set of all
$(\sum {\ell }_{q})_{c_{0}}$
-strictly singular operators on
$(\sum {\ell }_{q})_{c_{0}}$
forms the unique maximal ideal of
$\mathcal {L}((\sum {\ell }_{q})_{c_{0}})$
.
Bentuo Zheng’s research is supported in part by Simons Foundation Grant 585081.