Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T03:45:37.739Z Has data issue: false hasContentIssue false

Hermann Weyl's Intuitionistic Mathematics

Published online by Cambridge University Press:  15 January 2014

Dirk van Dalen*
Affiliation:
Department of Philosophy, Utrecht University, P.O. Box 80.126, 3508 TC, Utrecht, The, NetherlandsE-mail:[email protected]

Extract

Dedicated to Dana Scott on his sixtieth birthday.

It is common knowledge that for a short while Hermann Weyl joined Brouwer in his pursuit of a revision of mathematics according to intuitionistic principles. There is, however, little in the literature that sheds light on Weyl's role and in particular on Brouwer's reaction to Weyl's allegiance to the cause of intuitionism. This short episode certainly raises a number of questions: what made Weyl give up his own program, spelled out in “Das Kontinuum”, how did Weyl come to be so well-informed about Brouwer's new intuitionism, in what respect did Weyl's intuitionism differ from Brouwer's intuitionism, what did Brouwer think of Weyl's views,…? To some of these questions at least partial answers can be put forward on the basis of some of the available correspondence and notes. The present paper will concentrate mostly on the historical issues of the intuitionistic episode in Weyl's career.

Weyl entered the foundational controversy with a bang in 1920 with his sensational paper “On the new foundational crisis in mathematics”. He had already made a name for himself in the foundations of mathematics in 1918 with his monograph “The Continuum” [18]; this contained in addition to a technical logical-mathematical construction of the continuum, a fairly extensive discussion of the shortcomings of the traditional construction of the continuum on the basis of arbitrary—and hence also impredicative—Dedekind cuts.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Brouwer, L. E. J., Intuitionisme en Formalisme, Noordhoff, Groningen, 1912, 32 pp.Google Scholar
[2] Brouwer, L. E. J., Intuitionism and formalism, Bulletin of the American Mathematical Society, vol. 20 (1914), pp. 8196.Google Scholar
[3] Brouwer, L. E. J., Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Erster Teil. Allgemeine Mengenlehre, Koninklijke Nederlandse Akademie van Wetenschappen–Verhandelingen, vol. 12 (1918), no. 5, 43 pp.Google Scholar
/4] Brouwer, L. E. J., Über Definitionsbereiche von Funktionen, Mathematische Annalen, vol. 97 (1927), pp. 60–75, Also in [17], pp. 446463.Google Scholar
[5] Feferman, S., Weyl vindicated: “Das Kontinuum” 70 years later, Termi e prospettive della logica e della filosofia della scienza contemporanee, vol. I, CLUEB, Bologna, 1988.Google Scholar
[6] Frey, G. and Stammbach, U., Hermann Weyl und die Mathematik an der ETH Zürich. 19131930, Birkhäuser, 1992.Google Scholar
[7] Heyting, A., Mathematische Grundlagenforschung. Beweistheorie, Springer Verlag, Berlin, 1934, 73 pp.Google Scholar
[8] Hilbert, D., Die Grundlagen der Mathematik II, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, vol. 6 (1928), pp. 6585.Google Scholar
[9] Hilbert, D. and Bernays, P., Die Grundlagen der Mathematik, I, Springer, Berlin, 1934.Google Scholar
[10] Kleene, S. C., Realizability: a retrospective survey, Cambridge summer school in mathematical logic, Springer Lecture Notes in Mathematics, no. 337, Springer-Verlag, Berlin, 1973, pp. 95112.Google Scholar
[11] Kolmogorov, , Zur Deutung der intuitionistischen Logik, Mathematische Zeitschrift, vol. 35 (1932), pp. 5865.Google Scholar
[12] Kreisel, G., A remark on free choice sequences and the topological completeness proofs, Journal of Symbolic Logic, vol. 23 (1958), pp. 369388.Google Scholar
[13] Lorenzen, P., Einführung in die operative Logik und Mathematik, Springer, 1955.Google Scholar
[14] Troelstra, A. S. and Van Dalen, D., Constructivism in Mathematics, vol. I, II, North-Holland, Amsterdam, 1988.Google Scholar
[15] Van Dalen, D. and Troelstra, A. S., Projections of lawless sequences, Intuitionism and Proof Theory (Myhill, J., Kino, A., and Vesley, R., editors), North-Holland, Amsterdam, 1970, pp. 163186.Google Scholar
[16] Hoeven, G. van der, Projections of lawless sequences, (diss.) Mathematical Centre Tracts, Amsterdam, 1982.Google Scholar
[17] Heijenoort, J. van, From Frege to Gödel. a source book in mathematical logic, 1879–1931, Harvard University Press, Cambridge, Mass., 1967, 660 pp.Google Scholar
[18] Weyl, H., Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Analysis, Veit, Leipzig, 1918.Google Scholar
[19] Weyl, H., Über die neue Grundlagenkrise der Mathematik, Mathematische Zeitschrift, vol. 10 (1921), pp. 3979.Google Scholar
[20] Weyl, H., Randbemerkungen zu Hauptproblemen der Mathematik, Mathematische Zeitschrift, vol. 20 (1924), pp. 131150.CrossRefGoogle Scholar
[21] Weyl, H., Die heutige Erkenntnislage in der Mathematik, Symposion, vol. 1 (1925), pp. 132.Google Scholar
[22] Weyl, H., Diskussionsbemerkungen zu dem zweiten Hilbertschen Vortrag über die Grundlagen der Mathematik, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, vol. 6 (1928), pp. 86–88, Also in [17], pp. 480484.Google Scholar
[23] Weyl, H., Mathematics and Logic. A brief survey serving as a preface to a review of “The Philosophy of Bertrand Russell”, American Mathematical Monthly, vol. 53 (1946), pp. 213.Google Scholar
[24] Weyl, H., Selecta Hermann Weyl, Birkhäuser, Basel, 1956.Google Scholar