Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T04:33:49.320Z Has data issue: false hasContentIssue false

Full Frobenius Groups of Finite Morley Rank and the Feit-Thompson Theorem

Published online by Cambridge University Press:  15 January 2014

Eric Jaligot*
Affiliation:
Université Claude Bernard Lyon-1, Institut Girard Desargues, 43 Blvd Du 11 Novembre 1918, 69622 Villeurbanne Cedex, France. E-mail: [email protected] URL: http://www.desargues.univ-lyon1.fr/home/jaligot/jaligotF.html

Abstract

We show how the notion of full Frobenius group of finite Morley rank generalizes that of bad group, and how it seems to be more appropriate when we consider the possible existence (still unknown) of nonalgebraic simple groups of finite Morley rank of a certain type, notably with no involution. We also show how these groups appear as a major obstacle in the analysis of FT-groups, if one tries to extend the Feit-Thompson theorem to groups of finite Morley rank.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Altinel, Tuna, Borovik, Alexandre, and Cherlin, Gregory, K*-groups of finite Morley rank and of even type, preprint.Google Scholar
[2] Altinel, Tuna, Borovik, Alexandre, and Cherlin, Gregory, Pushing up and C (G, T) in groups of finite Morley rank, Submitted.Google Scholar
[3] Altinel, Tuna, Borovik, Alexandre, and Cherlin, Gregory, Groups of mixed type, Journal of Algebra, vol. 192 (1997), no. 2, pp. 524571.Google Scholar
[4] Altinel, Tuna, Borovik, Alexandre, and Cherlin, Gregory, On groups of finite Morley rank with weakly embedded subgroups, Journal of Algebra, vol. 211 (1999), no. 2, pp. 409456.CrossRefGoogle Scholar
[5] Altinel, Tuna, Borovik, Alexandre, and Cherlin, Gregory, Groups of finite Morley rank and even type with strongly dosed abelian sub-groups, Journal of Algebra, vol. 232 (2000), pp. 420461.Google Scholar
[6] Altinel, Tuna, Cherlin, Gregory, Corredor, Luis-Jaime, and Nesin, Ali, A Hall theorem for ω-stable groups, The Journal of the London Mathematical Society (2), vol. 57 (1998), no. 2, pp. 385397.CrossRefGoogle Scholar
[7] Babai, László, Tournaments with given (infinite) automorphism group, Periodica Math-ematica Hungarica, vol. 10 (1979), no. 1, pp. 99104.Google Scholar
[8] Bender, Helmut and Glauberman, George, Local analysis for the odd order theorem, Cambridge University Press, Cambridge, 1994, with the assistance of Walter Carlip.Google Scholar
[9] Berkman, Ayse, The classical involution theorem for groups of finite Morley rank, Submitted.Google Scholar
[10] Borovik, Aleksandr Vasilievich, Simple locally finite groups of finite Morley rank and odd type, Finite and locally finite groups (Istanbul, 1994), Kluwer Academic Publishers, Dordrecht, 1995, pp. 247284.CrossRefGoogle Scholar
[11] Borovik, Aleksandr Vasilievich and Poizat, Bruno Petrovich, Tores et p-groupes, The Journal of Symbolic Logic, vol. 55 (1990), no. 2, pp. 478491.Google Scholar
[12] Borovik, Alexandre and Berkman, Ayse, An identification theorem for groups of finite Morley rank and even type, Submitted.Google Scholar
[13] Borovik, Alexandre, Cherlin, Gregory, and Corredor, Luis Jaime, Parabolic 2-local subgroups in groups of finite Morley rank and even type, preprint.Google Scholar
[14] Borovik, Alexandre and Nesin, Ali, Groups of finite Morley rank, The Clarendon Press Oxford University Press, New York, 1994, Oxford Science Publications.Google Scholar
[15] Borovik, Alexandre and Poizat, Bruno, Simple groups of finite Morley rank without nonnilpotent connected subgroups, VINITI preprint, 1990.Google Scholar
[16] Cherlin, Gregory, Groups of small Morley rank, Annals of Mathematical Logic, vol. 17 (1979), no. 1-2, pp. 128.Google Scholar
[17] Corredor, Luis Jaime, Bad groups of finite Morley rank, The Journal of Symbolic Logic, vol. 54 (1989), no. 3, pp. 768773.Google Scholar
[18] Epstein, David and Nesin, Ali, On Frobenius groups of finite Morley rank. II, Automorphisms of first-order structures, Oxford University Press, New York, 1994, pp. 341350.Google Scholar
[19] Feit, Walter and Thompson, John G., Solvability of groups of odd order, Pacific Journal of Mathematics, vol. 13 (1963), pp. 7751029.Google Scholar
[20] Frécon, Olivier, Sous-groupes anormaux dans les groupes de rang de Morley fini résolubles, Journal of Algebra, vol. 229 (2000), no. 1, pp. 118152.CrossRefGoogle Scholar
[21] Hrushovski, Ehud, Contributions to stable model theory, PhD thesis, Berkeley.Google Scholar
[22] Ivanov, Sergei V., Conjugacy relations and some theorems on embeddings of groups, preprint.Google Scholar
[23] Ivanov, Sergei V., Three theorems on embeddings of groups, Proceedings, all union symposium on group theory (Sverdlovsk), 1989, pp. 5152.Google Scholar
[24] Ivanov, Sergei V. and Ol'shanskii, Alexander Yu., Some applications of graded diagrams in combinatorial group theory, Groups-St. Andrews 1989, volume 2, Cambridge University Press, Cambridge, 1991, pp. 258308.Google Scholar
[25] Jaligot, Eric, Groupes de type pair avec un sous-groupe faiblement inclus, to appear in the Journal of Algebra.Google Scholar
[26] Jaligot, Eric, Contributions à la classification des groupes simples de rang de Morley fini, Ph.D. thesis , Lyon, 1999.Google Scholar
[27] Jaligot, Eric, Groupes de typemixte, Journal of Algebra, vol. 212 (1999), no. 2, pp. 753768.Google Scholar
[28] Jaligot, Eric, FT-groupes, Prépublications de l'institut Girard Desargues, UPRESA 5028, Janvier 2000, n° 33, 2000.Google Scholar
[29] Jaligot, Eric, The group of the random tournament, Prépublications de l'institut Girard Desargues, UMR 5028, Janvier 2001, n°2, 2001.Google Scholar
[30] Macintyre, Angus, On ω1-categorical theories of fields, Fundamenta Mathematicae, vol. 71 (1971), no. 1, pp. 125. (errata insert).Google Scholar
[31] Morley, Michael, Categoricity in power, Transactions of the American Mathematical Society, vol. 114 (1965), pp. 514538.Google Scholar
[32] Nesin, Ali, Nonsolvable groups of Morley rank 3, Journal of Algebra, vol. 124 (1989), no. 1, pp. 199218.Google Scholar
[33] Nesin, Ali, On Frobenius groups of finite Morley rank. I, Automorphisms of first-order structures, Oxford University Press, New York, 1994, pp. 325339.CrossRefGoogle Scholar
[34] Poizat, Bruno, L'égalité au cube, To appear in the Journal of Symbolic Logic.Google Scholar
[35] Poizat, Bruno, Groupes stables, Bruno Poizat, Lyon, 1987, Une tentative de conciliation entre la géométrie algébrique et la logique mathématique.Google Scholar
[36] Poizat, Bruno and Wagner, Frank O., Lift the Sylows! A sequel to: “Periodic subgroups of a stable group” [Journal of Symbolic Logic, vol. 58 (1993), no. 2, pp. 385–400; MR 94m:03059], The Journal of Symbolic Logic, vol. 65 (2000), no. 2, pp. 703704.Google Scholar
[37] Suzuki, Michio, Group theory. II, Springer-Verlag, New York, 1986, translated from the Japanese.Google Scholar
[38] Wagner, Frank O., Fields of finite Morley rank, to appear in the Journal of Symbolic Logic.Google Scholar
[39] Wagner, Frank O., Stable groups, Cambridge University Press, Cambridge, 1997.Google Scholar
[40] Zil'ber, B. I., Groups and rings whose theory is categorical, Fundamenta Mathematicae, vol. 95 (1977), no. 3, pp. 173188.Google Scholar