Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T14:11:15.906Z Has data issue: false hasContentIssue false

EXPLICIT MATHEMATICS AND OPERATIONAL SET THEORY: SOME ONTOLOGICAL COMPARISONS

Published online by Cambridge University Press:  24 October 2014

GERHARD JÄGER
Affiliation:
INSTITUT FÜR INFORMATIK UND ANGEWANDTE MATHEMATIK UNIVERSITÄT BERN NEUBRÜCKSTRASSE 10 CH-3012 BERN SWITZERLAND E-mail: [email protected], [email protected]
RICO ZUMBRUNNEN
Affiliation:
INSTITUT FÜR INFORMATIK UND ANGEWANDTE MATHEMATIK UNIVERSITÄT BERN NEUBRÜCKSTRASSE 10 CH-3012 BERN SWITZERLAND E-mail: [email protected], [email protected]

Abstract

We discuss several ontological properties of explicit mathematics and operational set theory: global choice, decidable classes, totality and extensionality of operations, function spaces, class and set formation via formulas that contain the definedness predicate and applications.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barwise, K. J., Admissible Sets and Structures, Perspectives in Mathematical Logic, vol. 7, Springer, Berlin, 1975.Google Scholar
Beeson, M. J., Foundations of Constructive Mathematics: Metamathematical Studies, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3/6, Springer, Berlin, 1985.Google Scholar
Beeson, M. J., Towards a computation system based on set theory. Theoretical Computer Science, vol. 60 (1988), no. 3, pp. 297340.CrossRefGoogle Scholar
Cantini, A., Extending constructive operational set theory by impredicative principles. Mathematical Logic Quarterly, vol. 57 (2011), no. 3, pp. 299322.Google Scholar
Cantini, A. and Crosilla, L., Constructive set theory with operations, Logic Colloquium 2004 (Andretta, A., Kearnes, K., and Zambella, D., editors), Lecture Notes in Logic, vol. 29, Cambridge University Press, Cambridge, 2007, pp. 4783.Google Scholar
Cantini, A. and Crosilla, L., Elementary Constructive Operational Set Theory, Ways of Proof Theory (Schindler, R., editor), Ontos Verlag, Frankfurt, 2010, pp. 199240.Google Scholar
Feferman, S., A language and axioms for explicit mathematics, Algebra and Logic (Crossley, J.N., editor), Lecture Notes in Mathematics, vol. 450, Springer, Berlin, 1975, pp. 87139.Google Scholar
Feferman, S., Recursion theory and set theory: A marriage of convenience, Generalized Recursion Theory II, Oslo 1977 (Fenstad, J.E., Gandy, R.O., and Sacks, G.E., editors), Studies in Logic and the Foundations of Mathematics, vol. 94, Elsevier, Amsterdam, 1978, pp. 5598.Google Scholar
Feferman, S., Constructive theories of functions and classes, Logic Colloquium ’78 (Boffa, M., van Dalen, D., and McAloon, K., editors), Studies in Logic and the Foundations of Mathematics, vol. 97, Elsevier, Amsterdam, 1979, pp. 159224.Google Scholar
Feferman, S., Notes on Operational Set Theory, I. Generalization of “small” large cardinals in classical and admissible set theory, Technical Notes, 2001.Google Scholar
Feferman, S., Operational set theory and small large cardinals. Information and Computation, vol. 207 (2009), pp. 971979.Google Scholar
Feferman, S. and Jäger, G., Systems of explicit mathematics with nonconstructive μ-operator. Part II. Annals of Pure and Applied Logic, vol. 79 (1996), no. 1, pp. 3752.Google Scholar
Jäger, G., Theories for Admissible Sets: A Unifying Approach to Proof Theory, Studies in Proof Theory, Lecture Notes, vol. 2, Bibliopolis, Naples, 1986.Google Scholar
Jäger, G., Induction in the elementary theory of types and names, Computer Science Logic ’87 (Börger, E., Kleine Büning, H., and Richter, M.M., editors), Lecture Notes in Computer Science, vol. 329, Springer, Berlin, 1987, pp. 118128.Google Scholar
Jäger, G., Power types in explicit mathematics?. The Journal of Symbolic Logic, vol. 62 (1997), no. 4, pp. 11421146.Google Scholar
Jäger, G., On Feferman’s operational set theory OST. Annals of Pure and Applied Logic, vol. 150 (2007), no. 1–3, pp. 1939.Google Scholar
Jäger, G., Full operational set theory with unbounded existential quantification and power set. Annals of Pure and Applied Logic, vol. 160 (2009), no. 1, pp. 3352.Google Scholar
Jäger, G., Operations, sets and classes, Logic, Methodology and Philosophy of Science - Proceedings of the Thirteenth International Congress (Glymour, C., Wei, W., and Westerståhl, D., editors), College Publications, London, 2009, pp. 7496.Google Scholar
Jäger, G., Operational closure and stability. Annals of Pure and Applied Logic, vol. 164 (2013), no. 7–8, pp. 813821.Google Scholar
Jäger, G. and Strahm, T., Upper bounds for metapredicative Mahlo in explicit mathematics and admissible set theory. The Journal of Symbolic Logic, vol. 66 (2001), no. 2, pp. 935958.CrossRefGoogle Scholar
Jäger, G., Reflections on reflection in explicit mathematics. Annals of Pure and Applied Logic, vol. 136 (2005), no. 1–2, pp. 116133.Google Scholar
Jäger, G. and Studer, T., Extending the system T 0of explicit mathematics: the limit and Mahlo axioms. Annals of Pure and Applied Logic, vol. 114 (2002), no. 1–3, pp. 79101.Google Scholar
Jäger, G. and Zumbrunnen, R., About the strength of operational regularity, Logic, Construction, Computation (Berger, U., Diener, H., Schuster, P., and Seisenberger, M., editors), Ontos Verlag, Frankfurt, 2012, pp. 305324.Google Scholar
Rathjen, M., Fragments of Kripke-Platek set theory, Proof Theory (Aczel, P., Simmons, H., and Wainer, S., editors), Cambridge University Press, Cambridge, 1992, pp. 251273.Google Scholar
Troelstra, A.S. and van Dalen, D., Constructivism in Mathematics, I, Studies in Logic and the Foundations of Mathematics, vol. 121, Elsevier, Amsterdam, 1988.Google Scholar
Zumbrunnen, R., Ontological Questions about Operational Set Theory, Master thesis, Institut für Informatik und angewandte Mathematik, Universität Bern, 2009.Google Scholar
Zumbrunnen, R., Contributions to Operational Set Theory, Ph.D. thesis, Institut für Informatik und angewandte Mathematik, Universität Bern, 2013.Google Scholar