Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T19:46:13.524Z Has data issue: false hasContentIssue false

A CONJECTURAL CLASSIFICATION OF STRONGLY DEPENDENT FIELDS

Published online by Cambridge University Press:  04 March 2019

YATIR HALEVI
Affiliation:
DEPARTMENT OF MATHEMATICS BEN GURION UNIVERSITY OF THE NEGEV BE’ER SHEVA8410501, ISRAELE-mail: [email protected]: http://ma.huji.ac.il/∼yatirh/
ASSAF HASSON
Affiliation:
DEPARTMENT OF MATHEMATICS BEN GURION UNIVERSITY OF THE NEGEV BE’ER SHEVA8410501, ISRAEL E-mail: [email protected]: http://www.math.bgu.ac.il/∼hasson/
FRANZISKA JAHNKE
Affiliation:
WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER INSTITUT FÜR MATHEMATISCHE LOGIK UND GRUNDLAGENFORSCHUNG EINSTEINSTR. 62, 48149MÜNSTER, GERMANYE-mail: [email protected]

Abstract

We survey the history of Shelah’s conjecture on strongly dependent fields, give an equivalent formulation in terms of a classification of strongly dependent fields and prove that the conjecture implies that every strongly dependent field has finite dp-rank.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ax, J. and Kochen, S., Diophantine problems over local fields. I. American Journal of Mathematics, vol. 87 (1965), pp. 605630.CrossRefGoogle Scholar
Cherlin, G., Groups of small Morley rank. Annals of Mathematical Logic, vol. 17 (1979), no. 1–2, pp. 128.CrossRefGoogle Scholar
Cherlin, G. and Shelah, S., Superstable fields and groups. Annals of Mathematical Logic, vol. 18 (1980), no. 3, pp. 227270.CrossRefGoogle Scholar
Chernikov, A., Theories without the tree property of the second kind. Annals of Pure and Applied Logic, vol. 165 (2014), no. 2, pp. 695723.CrossRefGoogle Scholar
Delon, F., Types sur C(X), Study Group on Stable Theories (Bruno Poizat), Second Year: 1978/79 (French), Secrétariat Mathématique, Paris, 1981, p. 29.Google Scholar
Dupont, K., Definable valuations induced by definable subgroups, Groups, Modules, and Model Theory—Surveys and Recent Developments: In Memory of Rüdiger Göbel (Droste, M., Fuchs, L., Goldsmith, B., and Strüngmann, L., editors), Springer, Cham, 2017, pp. 83108.CrossRefGoogle Scholar
Dupont, K., Hasson, A., and Kuhlmann, S., Definable valuations induced by multiplicative subgroups and NIP fields, Archive for Mathematical Logic, to appear.Google Scholar
Duret, J.-L., Les corps faiblement algébriquement clos non séparablement clos ont la propriété d’indépendence, Model Theory of Algebra and Arithmetic (Proceedings of the Conference, Karpacz, 1979 ) (Pacholski, L., Wierzejewski, J., and Wilkie, A. J., editors), Lecture Notes in Mathematics, vol. 834, Springer, Berlin-New York, 1980, pp. 136162.Google Scholar
Engler, A. J. and Prestel, A., Valued Fields, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005.Google Scholar
Farré, R., Strong ordered abelian groups and dp-rank, preprint, 2017, arXiv:1706.05471.Google Scholar
Gurevich, Y. and Schmitt, P. H., The theory of ordered abelian groups does not have the independence property. Transactions of the American Mathematical Society, vol. 284 (1984), no. 1, pp. 171182.CrossRefGoogle Scholar
Halevi, Y. and Hasson, A., Strongly dependent ordered abelian groups and henselian fields. Israel Journal of Mathematics, 2017, to appear. Preprint available from arXiv:1706.03376.Google Scholar
Halevi, Y. and Hasson, A., Eliminating field quantifiers in strongly dependent fields. Proceedings of the American Mathematical Society, 2019, to appear. Available at https://doi.org/10.1090/proc/14203.CrossRefGoogle Scholar
Halevi, Y., Hasson, A., and Jahnke, F., Definable V-topologies, henselianity and NIP, preprint, 2019, arXiv:1901.05920.Google Scholar
Halevi, Y. and Palacín, D., The dp-rank of abelian groups, preprint, 2017, arXiv:1712.04503.Google Scholar
Haskell, D. and Macpherson, D., Cell decompositions of C-minimal structures. Annals of Pure and Applied Logic, vol. 66 (1994), no. 2, pp. 113162.CrossRefGoogle Scholar
Jahnke, F., When does NIP transfer from fields to henselian expansions? preprint, 2016, arXiv:1607.02953.Google Scholar
Jahnke, F. and Koenigsmann, J., Definable henselian valuations. Journal of Symbolic Logic, vol. 80 (2015), no. 1, pp. 8599.CrossRefGoogle Scholar
Jahnke, F. and Koenigsmann, J., Uniformly defining p-henselian valuations. Annals of Pure and Applied Logic, vol. 166 (2015), no. 7–8, pp. 741754.CrossRefGoogle Scholar
Jahnke, F, Simon, P., and Walsberg, E., Dp-minimal valued fields. Journal of Symbolic Logic, vol. 82 (2017), no. 1, pp. 151165.CrossRefGoogle Scholar
Johnson, W., Fun with fields, Ph.D. thesis, University of California, Berkeley, 2016.Google Scholar
Johnson, W., The canonical topology on dp-minimal fields. Journal of Mathematical Logic, vol. 18 (2018), no. 2, p. 1850007, 23.CrossRefGoogle Scholar
Kaplan, I., Scanlon, T., and Wagner, F. O., Artin-Schreier extensions in NIP and simple fields. Israel Journal of Mathematics, vol. 185 (2011), pp. 141153.CrossRefGoogle Scholar
Koenigsmann, J., p-henselian fields. Manuscripta Mathematica, vol. 87 (1995), no. 1, pp. 8999.CrossRefGoogle Scholar
Kuhlmann, F.-V., Value groups, residue fields, and bad places of rational function fields. Transactions of the American Mathematical Society, vol. 356 (2004), no. 11, pp. 45594600.CrossRefGoogle Scholar
Kuhlmann, F.-V., Pank, M., and Roquette, P., Immediate and purely wild extensions of valued fields. Manuscripta Mathematica, vol. 55 (1986), no. 1, pp. 3967.CrossRefGoogle Scholar
Lang, S., Algebra, Graduate Texts in Mathematics, vol. 211, third ed., Springer-Verlag, New York, 2002.CrossRefGoogle Scholar
Macintyre, A., On ω1-categorical theories of fields. Fundamenta Mathematicae, vol. 71 (1971), no. 1, pp. 125.CrossRefGoogle Scholar
Macpherson, D., Marker, D., and Steinhorn, C., Weakly o-minimal structures and real closed fields. Transactions of the American Mathematical Society, vol. 352 (2000), no. 12, pp. 54355483.CrossRefGoogle Scholar
Onshuus, A. and Usvyatsov, A., On dp-minimality, strong dependence and weight. Journal of Symbolic Logic, vol. 76 (2011), no. 3, pp. 737758.CrossRefGoogle Scholar
Pillay, A. and Steinhorn, C., Definable sets in ordered structures. I. Transactions of the American Mathematical Society, vol. 295 (1986), no. 2, pp. 565592.CrossRefGoogle Scholar
Prestel, A. and Roquette, P., Formally p-adic Fields, Lecture Notes in Mathematics, vol. 1050, Springer-Verlag, Berlin, 1984.Google Scholar
Reineke, J., Minimale Gruppen. Zeitschrift für mathematische Logik, vol. 21 (1975), pp. 357359.CrossRefGoogle Scholar
Shelah, S., Dependent first order theories, continued. Israel Journal of Mathematics, vol. 173 (2009), pp. 160.CrossRefGoogle Scholar
Shelah, S., Strongly dependent theories. Israel Journal of Mathematics, vol. 204 (2014), no. 1, pp. 183.CrossRefGoogle Scholar
Simon, P., A Guide to NIP Theories, Lecture Notes in Logic, Cambridge University Press, Cambridge, 2015.CrossRefGoogle Scholar
Sinclair, P., Relationships between model theory and valuations of fields, Ph.D. thesis, McMaster University, Ontario, 2018. Available at http://hdl.handle.net/11375/23326.Google Scholar
Tent, K. and Ziegler, M., A Course in Model Theory, Lecture Notes in Logic, Cambridge University Press, Cambridge, 2012.CrossRefGoogle Scholar
van den Dries, L., Lectures on the model theory of valued fields, Model Theory in Algebra, Analysis and Arithmetic (Macpherson, H. D. and Toffalori, C., editors), Lecture Notes in Mathematics, vol. 2111, Springer, Heidelberg, 2014, pp. 55157.CrossRefGoogle Scholar