Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T03:55:24.088Z Has data issue: false hasContentIssue false

What is Tarski's Common Concept of Consequence?

Published online by Cambridge University Press:  15 January 2014

Ignacio Jané*
Affiliation:
Departament de Lògica, Història I Filosofia de la Ciència, Universitat de Barcelona, Baldiri Reixac, S/N, 08028 Barcelona, Spain. E-mail: [email protected]

Abstract

In 1936 Tarski sketched a rigorous definition of the concept of logical consequence which, he claimed, agreed quite well with common usage—or, as he also said, with the common concept of consequence. Commentators of Tarski's paper have usually been elusive as to what this common concept is. However, being clear on this issue is important to decide whether Tarski's definition failed (as Etchemendy has contended) or succeeded (as most commentators maintain). I argue that the common concept of consequence that Tarski tried to characterize is not some general, all-purpose notion of consequence, but a rather precise one, namely the concept of consequence at play in axiomatics. I identify this concept and show that Tarski's definition is fully adequate to it.

Type
Articles
Copyright
Copyright © Association for Symbolic Logic 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Awodey, Steve and Carus, André W., Carnap, completeness, and categoricity: The Gabelbarkeitssatz of 1928, Erkenntnis, vol. 54 (2001), pp. 145172.CrossRefGoogle Scholar
[2] Awodey, Steve and Reck, Erich H., Completeness and categoricity, part I: Nineteenth-century axiomatics to twentieth-century metalogic, History and Philosophy of Logic, vol. 23 (2002), pp. 130.Google Scholar
[3] Bays, Timothy, On Tarski on models, The Journal of Symbolic Logic, vol. 66 (2001), pp. 17011726.CrossRefGoogle Scholar
[4] Carnap, Rudolf, Bericht über Untersuchungen zur allgemeinen Axiomatik, Erkenntnis, vol. 1 (1930), pp. 302307.Google Scholar
[5] Carnap, Rudolf, The logical syntax of language, Routledge and Kegan Paul, London, 1937.Google Scholar
[6] Etchemendy, John, The concept of logical consequence, Harvard University Press, Cambridge, Massachusetts, 1990.Google Scholar
[7] Ewald, William (editor), From Kant to Hilbert: A source book in the foundations of mathematics, vol. II, Clarendon Press, Oxford, 1996.Google Scholar
[8] Ferreirós, José, Labyrinth of thought, Birkhäuser, Basel, 1999.Google Scholar
[9] Fraenkel, Adolf, Einleitung in die Mengenlehre, third ed., Julius Springer, Amsterdam, 1928.Google Scholar
[10] Gödel, Kurt, Collected works, vol. I: Publications 1929–1936. Feferman, S. et al. (eds.), Oxford University Press, New York, 1986.Google Scholar
[11] Gómez-Torrente, Mario, Tarski on logical consequence, Notre Dame Journal of Formal Logic, vol. 37 (1996), pp. 125151.CrossRefGoogle Scholar
[12] Gómez-Torrente, Mario, On a fallacy attributed to Tarski, History and Philosophy of Logic, vol. 19 (1998), pp. 227234.Google Scholar
[13] Hilbert, David, Über den Zahlbegriff, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 8 (1900), pp. 180184, Translated into English as “On the concept of number”, in [7], pp. 1092–1095, from which references are made.Google Scholar
[14] Hilbert, David and Ackermann, Wilhelm, Grundzüge der theoretischen Logik, Springer, Berlin, 1928.Google Scholar
[15] Hilbert, David and Bernays, Paul, Grundlagen der Mathematik, vol. 1, Springer, Berlin, 1934.Google Scholar
[16] Huntington, Edward V., Sets of independent postulates for the algebra of logic, Transactions of the American Mathematical Society, vol. 5 (1904), pp. 288309.CrossRefGoogle Scholar
[17] Huntington, Edward V., The fundamental propositions of algebra, Monographs on topics of modern mathematics (Young, John Wesley, editor), Longmans, Green and Co., New York, 1911, pp. 149207.Google Scholar
[18] Huntington, Edward V., A set of postulates for abstract geometry expressed in terms of the simple relation of inclusion, Mathematische Annalen, vol. 73 (1913), pp. 522559.CrossRefGoogle Scholar
[19] Kleene, Stephen C., Introduction to metamathematics, Wolters-Noordhoff, Groningen, 1971.Google Scholar
[20] Kline, Morris, Mathematical thought from ancient to modern times, Oxford University Press, New York, 1972.Google Scholar
[21] Langford, C. H., Some theorems on deducibility, Annals of Mathematics, vol. 28 (1926), pp. 1640.Google Scholar
[22] Langford, C. H., Theorems on deducibility, Annals of Mathematics, vol. 28 (1927), pp. 459471.CrossRefGoogle Scholar
[23] MacLane, Saunders, Review of Tarski: Einführung in die Mathematische Logik und in die Methodologie der Mathematik, The Journal of Symbolic Logic, vol. 3 (1938), pp. 5152.Google Scholar
[24] Mancosu, Paolo, Tarski onmodels and logical consequence, The architecture of modern mathematics (Ferreirós, J. and Gray, J., editors), Oxford University Press, Forthcoming.Google Scholar
[25] Padoa, Alessandro, Essai d'une théorie algébrique des nombres entiers, précédé d'une introduction logique à une théorie déductive quelconque, Bibliothèque du Congrès international de philosophie, Paris, 1900, vol. 3 (1900), pp. 309365, Partial English translation in [64], pp. 118–123, to which references are made.Google Scholar
[26] Pasch, Moritz, Vorlesungen über neuere Geometrie, second ed., Springer, Berlin, 1926, The first edition appeared in 1882.Google Scholar
[27] Peano, Giuseppe, Studii di logica matematica, Atti della Reale Accademia delle Scienze di Torino, vol. 32 (1897), pp. 565583, reprinted in [28], pp. 201–217.Google Scholar
[28] Peano, Giuseppe, Opere scelte, Unione Matematica Italiana, Edizioni Cremonese, Roma, 1958.Google Scholar
[29] Peano, Giuseppe, The principles of arithmetic, presented by a new method, In van Heijenoort, [64], pp. 8397.Google Scholar
[30] Pieri, Mario, Sui principii che reggono la geometria di posizione. Nota I, Atti della Reale Accademia delle Scienze di Torino, vol. 30 (1895), pp. 607641, reprinted in [35], pp. 13–48.Google Scholar
[31] Pieri, Mario, I principii della geometria di posizione composti in sistema logico deduttivo, Memorie della Reale Accademia delle Scienze di Torino, vol. 48 (1898), pp. 162, reprinted in [35], pp. 101–162.Google Scholar
[32] Pieri, Mario, Sur la géometrie envisagée comme un système purement logique, Bibliothèque du Congrès international de philosophie, Paris, 1900, vol. 3 (1900), pp. 367404, reprinted in [35], pp. 235–272.Google Scholar
[33] Pieri, Mario, Sur la compatibilité des axiomes de l'arithmétique, Revue de Métaphysique et de Morale, vol. 14 (1906), pp. 196207, reprinted in [35], pp. 377–388.Google Scholar
[34] Pieri, Mario, La geometria elementare istituita sulle nozione di “punto” e “sfera”, Memorie della Società Italiana delle Scienze, vol. 15 (1908), pp. 345450, reprinted in [35], pp. 455–560.Google Scholar
[35] Pieri, Mario, Opere sui fondamenti della matematica, Unione Matematica Italiana, Edizioni Cremonese, Bologna, 1980.Google Scholar
[36] Ray, Greg, Logical consequence: A defense of Tarski, Journal of Philosophical Logic, vol. 25 (1996), pp. 617677.CrossRefGoogle Scholar
[37] Sagüillo, José Miguel, Logical consequence revisited, this Bulletin, vol. 3 (1997), pp. 216241.Google Scholar
[38] Scanlan, Michael J., Who were the American postulate theorists?, The Journal of Symbolic Logic, vol. 56 (1991), pp. 9811002.Google Scholar
[39] Scanlan, Michael J., American postulate theorists and Alfred Tarski, History and Philosophy of Logic, vol. 24 (2003), pp. 307325.Google Scholar
[40] Sher, Gila, The bounds of logic, The MIT Press, Cambridge, Massachusetts, 1991.Google Scholar
[41] Sher, Gila, Did Tarski commit “Tarski's fallacy”?, The Journal of Symbolic Logic, vol. 61 (1996), pp. 653686.Google Scholar
[42] Szczerba, L.W., Tarski and geometry, The Journal of Symbolic Logic, vol. 51 (1986), pp. 907912.Google Scholar
[43] Tarski, Alfred, Einige Betrachtungen über die Begriffe der ω-Widerspruchsfreiheit und der ω-Vollständigkeit, Monatshefte für Mathematik und Physik, vol. 40 (1933), pp. 97112, reprinted in [59], pp. 621–636.Google Scholar
[44] Tarski, Alfred, Über den Begriff der logischen Folgerung, Actes du Congrès International de Philosophie Scientifique, vol. 7 (1936), pp. 111, reprinted in [60], pp. 271–281.Google Scholar
[45] Tarski, Alfred, Einführung in die Mathematische Logik und in die Methodologie der Mathematik, Julius Springer, Wien, 1937.Google Scholar
[46] Tarski, Alfred, Sur la méthode deductive, Travaux du IXe Congrés International de Philosophie, vol. 6 (1937), pp. 95103, in [60], pp. 325–333.Google Scholar
[47] Tarski, Alfred, What is elementary geometry?, The axiomatic method, with special reference to geometry and physics (Henkin, L., Suppes, P., and Tarski, A., editors), North Holland, Amsterdam, 1959, pp. 1629.Google Scholar
[48] Tarski, Alfred, The concept of truth in formalized languages, In Logic, Semantics, Metamathematics [52], pp. 152278.Google Scholar
[49] Tarski, Alfred, Foundations of the calculus of systems, In Logic, Semantics, Metamathematics [52], pp. 342383.Google Scholar
[50] Tarski, Alfred, Foundations of the geometry of solids, In Logic, Semantics, Metamathematics [52], pp. 2429.Google Scholar
[51] Tarski, Alfred, Fundamental concepts of the methodology of the deductive sciences, In Logic, Semantics, Metamathematics [52], pp. 60109.Google Scholar
[52] Tarski, Alfred, Logic, semantics, metamathematics, translated by Woodger, J. H., edited and introduced by Corcoran, J., second ed., Hackett, Indianapolis, Indiana, 1983.Google Scholar
[53] Tarski, Alfred, On definable sets of real numbers, In Logic, Semantics, Metamathematics [52], pp. 110142.Google Scholar
[54] Tarski, Alfred, On some fundamental concepts of metamathematics, In Logic, Semantics, Metamathematics [52], pp. 3037.Google Scholar
[55] Tarski, Alfred, On the concept of logical consequence, In Logic, Semantics, Metamathematics [52], pp. 409420.Google Scholar
[56] Tarski, Alfred, On the foundations of boolean algebra, In Logic, Semantics, Metamathematics [52], pp. 320341.Google Scholar
[57] Tarski, Alfred, Some methodological investigations on the definability of concepts, In Logic, Semantics, Metamathematics [52], pp. 296319.Google Scholar
[58] Tarski, Alfred, Some observations on the concepts of ω-consistency and ω-completeness, In Logic, Semantics, Metamathematics [52], pp. 279295.Google Scholar
[59] Tarski, Alfred, Collected papers. vol 1: 1921–1934, Birkhäuser, Basel, 1986, edited by Givant, Steven R. and McKenzie, Ralph N..Google Scholar
[60] Tarski, Alfred, Collected papers. vol 2: 1935–1944, Birkhäuser, Basel, 1986, edited by Givant, Steven R. and McKenzie, Ralph N..Google Scholar
[61] Tarski, Alfred, On the concept of following logically. Translated from the Polish by Magda Stroińska and David Hitchcock, History and Philosophy of Logic, vol. 23 (2002), pp. 155196.Google Scholar
[62] Tarski, Alfred and Givant, Steven, Tarski's system of geometry, this Bulletin, vol. 5 (1999), pp. 175214.Google Scholar
[63] Tarski, Alfred and Lindenbaum, Adolf, On the limitations of themeans of expression of deductive theories, In Logic, Semantics, Metamathematics [52], pp. 384392.Google Scholar
[64] van Heijenoort, Jan (editor), From Frege to Gödel: A source book in mathematical logic, Harvard University Press, Cambridge, Massachusetts, 1967.Google Scholar
[65] Vaught, Robert L., Alfred Tarski's work in model theory, The Journal of Symbolic Logic, vol. 51 (1986), pp. 869882.Google Scholar
[66] Veblen, Oswald, A system of axioms for geometry, Transactions of the American Mathematical Society, vol. 5 (1904), pp. 343384.Google Scholar
[67] Veblen, Oswald and Young, John Wesley, Projective geometry, vol. I, Ginn and Company, Boston, 1910.Google Scholar