Article contents
Reconsidering Ordered Pairs
Published online by Cambridge University Press: 15 January 2014
Abstract
The well known Wiener-Kuratowski explicit definition of the ordered pair, which sets (x,y) = {{x}, {x,y}}, works well in many set theories but fails for those with classes which cannot be members of singletons. With the aid of the Axiom of Foundation, we propose a recursive definition of ordered pair which addresses this shortcoming and also naturally generalizes to ordered tuples of greater length. There are many advantages to the new definition, for it allows for uniform definitions working equally well in a wide range of models for set theories. In ZFC and closely related theories, the rank of an ordered pair of two infinite sets under the new definition turns out to be equal to the maximum of the ranks of the sets.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2008
References
REFERENCES
- 11
- Cited by