Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T03:37:09.607Z Has data issue: false hasContentIssue false

Hilbert's Programs: 1917–1922

Published online by Cambridge University Press:  15 January 2014

Wilfried Sieg*
Affiliation:
Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213, USA, E-Mail:[email protected]

Abstract

Hilbert's finitist program was not created at the beginning of the twenties solely to counteract Brouwer's intuitionism, but rather emerged out of broad philosophical reflections on the foundations of mathematics and out of detailed logical work; that is evident from notes of lecture courses that were given by Hilbert and prepared in collaboration with Bernays during the period from 1917 to 1922. These notes reveal a dialectic progression from a critical logicism through a radical constructivism toward finitism; the progression has to be seen against the background of the stunning presentation of mathematical logic in the lectures given during the winter term 1917/18. In this paper, I sketch the connection of Hilbert's considerations to issues in the foundations of mathematics during the second half of the 19th century, describe the work that laid the basis of modern mathematical logic, and analyze the first steps in the new subject of proof theory. A revision of the standard view of Hilbert's and Bernays's contributions to the foundational discussion in our century has long been overdue. It is almost scandalous that their carefully worked out notes have not been used yet to understand more accurately the evolution of modern logic in general and of Hilbert's Program in particular. One conclusion will be obvious: the dogmatic formalist Hilbert is a figment of historical (de)construction! Indeed, the study and analysis of these lectures reveal a depth of mathematical-logical achievement and of philosophical reflection that is remarkable. In the course of my presentation many questions are raised and many more can be explored; thus, I hope this paper will stimulate interest for new historical and systematic work.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Abrusci, Vito Michele, “Proof”, “theory”, and “foundations” in Hilbert's mathematical work from 1885 to 1900, Italian studies in the philosophy of science (Chiara, M.L.Dalla, editor), Dordrecht, 1981, pp. 453491.CrossRefGoogle Scholar
[2] Abrusci, Vito Michele, David Hilbert's ‘Vorlesungen’ on logic and foundations of mathematics, Atti del convegno internazionale di storia della logica, San Gimignano, 1987 (Corsi, G., Mangione, C., and Mugnai, M., editors), 1989, pp. 333338.Google Scholar
[3] Ackermann, Wilhelm, Begründung des “tertium non datur” mittels der Hilbertschen Theorie der Widerspruchsfreiheit, Mathematische Annalen, vol. 93 (1925), pp. 136.Google Scholar
[4] Aspray, William and Kitcher, Philip (editors), History and philosophy of modern mathematics, Minnesota Studies in the Philosophy of Science, vol. XI, Minneapolis, 1988.Google Scholar
[5] Behmann, Heinrich, Die Antinomie der transfiniten Zahl und ihre Auflösung durch die Theorie von Russell und Whitehead, Dissertation, Göttingen, 1918.Google Scholar
[6] Bernays, Paul, Beiträge zur axiomatischen Behandlung des Logik-Kalküls, Habilitation, Göttingen, 1918.Google Scholar
[7] Bernays, Paul, Hilberts Bedeutung für die Philosophie der Mathematik, Die Naturwissenschaften, vol. 4 (1922), pp. 9399.CrossRefGoogle Scholar
[8] Bernays, Paul, Über Hilberts Gedanken zur Grundlegung der Mathematik, Jahresberichte DMV, vol. 31 (1922), pp. 1019.Google Scholar
[9] Bernays, Paul, Axiomatische Untersuchung des Aussagen-Kalküls der “Principia Mathematica”, Mathematische Zeitschrift, vol. 25 (1926), pp. 305320.Google Scholar
[10] Bernays, Paul, Die Philosophie der Mathematik und die Hilbertsche Beweistheorie, 1930, in [16], pp. 1761.Google Scholar
[11] Bernays, Paul, Über den Platonismus in der Mathematik, 1934, in [16], pp. 6278.Google Scholar
[12] Bernays, Paul, Hilberts Untersuchungen über die Grundlagen der Arithmetik, 1935, in [71], pp. 196216.Google Scholar
[13] Bernays, Paul, Mathematische Existenz und Widerspruchsfreiheit, 1950, in [16], pp. 92106.Google Scholar
[14] Bernays, Paul, Zur Beurteilung der Situation in der beweistheoretischen Forschung, Revue internationale de philosophie, vol. 8 (1954), pp. 9–13, Dicussion, pp. 1521.Google Scholar
[15] Bernays, Paul, Hilbert, David, Encyclopedia of philosophy (Edwards, P., editor), vol. 3, New York, 1967, pp. 496504.Google Scholar
[16] Bernays, Paul, Abhandlungen zur Philosophie der Mathematik, Wissenschaftliche Buchgesellschaft, Darmstadt, 1976.Google Scholar
[17] Bernays, Paul, A short biography, Sets and classes (Müller, Gert H., editor), North-Holland, Amsterdam, 1976, pp. xixiii.Google Scholar
[18] Brouwer, L. E. J., Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten, Erster Teil, Allgemeine Mengenlehre (1918), Koninklijke Akademie van wetenschappen te Amsterdam, le Sectie, deel XII., no. 5, pp. 143.Google Scholar
[19] Brouwer, L. E. J., Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten, Zweiter Teil, Theorie der Punktmengen (1919), Koninklijke Akademie van wetenschappen te Amsterdam, le Sectie, deel XII, no. 7, pp. 133.Google Scholar
[20] Brouwer, L. E. J., Intuitionistische Mengenlehre, Jahresberichte DMV, vol. 28 (1919), pp. 203208, translated in [78].Google Scholar
[21] Brouwer, L. E. J., Besitzt jede reelle Zahl eine Dezimalbruchentwicklung?, Mathematische Annalen, vol. 83 (1921), pp. 201–10.Google Scholar
[22] Buchholz, Wilfried, Feferman, Solomon, Pohlers, Wolfram, and Sieg, Wilfried, Iterated inductive definitions and subsystems of analysis: recent proof-theoretical studies, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1981.Google Scholar
[23] Cantor, Georg, Letters to Hilbert, 1897/1899, in [86].Google Scholar
[24] Cantor, Georg, Letter to Dedekind, 1899, in [101], pp. 113117.Google Scholar
[25] Dedekind, Richard, Stetigkeit und irrationale Zahlen, 1872, in [33], pp. 315324.Google Scholar
[26] Dedekind, Richard, Sur la théorie des nombres entiers algébriques, Bulletin des Sciences mathématiques et astronomiques (1877), pp. 1121, partially reprinted in [33], pp. 262296.Google Scholar
[27] Dedekind, Richard, Was sind und was sollen die Zahlen?, 1888, in [33], pp. 335391.Google Scholar
[28] Dedekind, Richard, Letter to Keferstein, 1890, in [101], pp. 98103.Google Scholar
[29] Dreben, Burton and Heijenoort, Jean van, Introductory note to [34], 1986, pp. 4459.Google Scholar
[30] Ewald, William B. (editor), From Kant to Hilbert—A source book in the foundations of mathematics, two volumes, Oxford University Press, 1996.Google Scholar
[31] Feferman, Solomon, Hilbert's Program relativized: proof-theoretical and foundational reductions, Journal of Symbolic Logic, vol. 53 (1988), no. 2, pp. 364384.Google Scholar
[32] Frei, Günter (editor), Der Briefwechsel David Hilbert–Felix Klein (1886–1918), Göttingen, 1985.Google Scholar
[33] Fricke, , Noether, , and Ore, (editors), Gesammelte mathematische Werke, Dritter Band, Braunschweig, 1932.Google Scholar
[34] Gödel, Kurt, Über die Vollständigkeit des Logikkalküls, Dissertation, Vienna, 1929, reprinted and translated in [43], pp. 44101.Google Scholar
[35] Gödel, Kurt, Die Vollständigkeit der Axiome des logischen Funktionenkalküls, 1930, reprinted and translated in [43], pp. 102123.CrossRefGoogle Scholar
[36] Gödel, Kurt, über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, 1931, reprinted and translated in [43], pp. 126195.Google Scholar
[37] Gödel, Kurt, The present situation in the foundations of mathematics, 1933, in [45], pp. 3653.Google Scholar
[38] Gödel, Kurt, Zur intuitionistischen Arithmetik und Zahlentheorie, 1933, reprinted and translated in [43], pp. 282295.Google Scholar
[39] Gödel, Kurt, Vortrag by Zilsel, 1938, in [45], pp. 62113.Google Scholar
[40] Gödel, Kurt, In what sense is intuitionistic logic constructive?, 1941, in [45], pp. 186200.Google Scholar
[41] Gödel, Kurt, Russell's mathematical logic, 1944, in [44], pp. 102141.Google Scholar
[42] Gödel, Kurt, Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, 1958, in l44], pp. 217251.CrossRefGoogle Scholar
[43] Gödel, Kurt, Collected works, vol. I, Oxford University Press, Oxford, New York, 1986.Google Scholar
[44] Gödel, Kurt, Collected works, vol. II, Oxford University Press, Oxford, New York, 1990.Google Scholar
[45] Gödel, Kurt, Collected works, vol. III, Oxford University Press, Oxford, New York, 1995.Google Scholar
[46] Goldfarb, Warren, Logic in the twenties.: the nature of the quantifier., Journal of Symbolic Logic, vol. 44 (1979), no. 3, pp. 351368.Google Scholar
[47] Hallett, Michael, Physicalism, reductionism and Hilbert, Physicalism in mathematics (Irvine, A. D., editor), Kluwer, Dordrecht, 1989, pp. 183257.Google Scholar
[48] Hallett, Michael, Hilbert and logic, Québec studies in the philosophy of science I (Marion, M. and Cohen, R. S., editors), Kluwer, Dordrecht, 1995, pp. 135187.CrossRefGoogle Scholar
[49] Hilbert, David, Grundlagen der Geometrie, Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen, Teubner, Leipzig, 1899, pp. 192.Google Scholar
[50] Hilbert, David, Grundlagen der Geometrie, Leipzig and Berlin, 1900, 5. edition, 1922.Google Scholar
[51] Hilbert, David, Über den Zahlbegriff, Jahresberichte DMV, vol. 8 (1900), pp. 180194.Google Scholar
[52] Hilbert, David, Über die Grundlagen der Logik und Arithmetik, in [50], pp. 243258, 1905, translated in [101], pp. 129–138.Google Scholar
[53] Hilbert, David, Zahlbegriff und Prinzipienfragen in der Mathematik, 1908, unpublished lectures notes in the Hilbert Nachlaßat the University of Göttingen.Google Scholar
[54] Hilbert, David, Elemente und Prinzipienfragen der Mathematik, 1910, unpublished lectures notes in the Hilbert Nachlaß at the University of Göttingen.Google Scholar
[55] Hilbert, David, Grundlagen der Mathematik und Physik, 1913, unpublished lectures notes in the Hilbert Nachlaß at the University of Göttingen.Google Scholar
[56] Hilbert, David, Prinzipien der Mathematik, 1913, unpublished lectures notes in the Hilbert Nachlaß at the University of Göttingen.Google Scholar
[57] Hilbert, David, Probleme und Prinzipien der Mathematik, 1914/1915, unpublished lectures notes in the Hilbert Nachlaß at the University of Göttingen.Google Scholar
[58] Hilbert, David, Mengenlehre, 1917, unpublished lectures notes in the Hilbert Nachlaß at the University of Göttingen.Google Scholar
[59] Hilbert, David, Prinzipien der Mathematik, 1917/1918, unpublished lectures notes in the Hilbert Nachlaß at the University of Göttingen.Google Scholar
[60] Hilbert, David, Axiomatisches Denken, Mathematische Annalen, vol. 78 (1918), pp. 405415.Google Scholar
[61] Hilbert, David, Natur und mathematisches Erkennen, 1919, unpublished lectures notes in the Hilbert Nachlaß at the University of Göttingen.Google Scholar
[62] Hilbert, David, Logik-Kalkül, winter term 1920, unpublished lectures notes in the Hilbert Nachlaß at the University of Göttingen.Google Scholar
[63] Hilbert, David, Probleme der mathematischen Logik, summer term 1920, unpublished lectures notes in the Hilbert Nachlaß at the University of Göttingen.Google Scholar
[64] Hilbert, David, Grundlagen der Mathematik, 1921/1922, unpublished lectures notes in the Hilbert Nachlaß at the University of Göttingen.Google Scholar
[65] Hilbert, David, Neubegründung der Mathematik, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, vol. 1 (1922), pp. 157177.Google Scholar
[66] Hilbert, David, Logische Grundlagen der Mathematik, 1922/1923, unpublished lectures notes in the Hilbert Nachlaß at the University of Göttingen.CrossRefGoogle Scholar
[67] Hilbert, David, Die logischen Grundlagen der Mathematik, Mathematische Annalen, vol. 88 (1923), pp. 151165.Google Scholar
[68] Hilbert, David, Über das Unendliche, Mathematische Annalen, vol. 95 (1926), pp. 161–190, translated in [101], pp. 367392.Google Scholar
[69] Hilbert, David, Die Grundlagen der Mathematik, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, vol. 6 (1928), no. 1/2, pp. 6585.Google Scholar
[70] Hilbert, David, Probleme der Grundlegung der Mathematik, Mathematische Annalen, vol. 102 (1929), pp. 19.Google Scholar
[71] Hilbert, David, Gesammelte Abhandlungen, 3. Band, Berlin, 1935.Google Scholar
[72] Hilbert, David and Ackermann, Wilhelm, Grundzüge der theoretischen Logik, Springer-Verlag, Berlin, 1928.Google Scholar
[73] Hilbert, David and Bernays, Paul, Grundlagen der Mathematik, vol. 1, Springer-Verlag, Berlin, 1934, second edition, 1968.Google Scholar
[74] Hilbert, David and Bernays, Paul, Grundlagen der Mathematik, vol. 2, Springer-Verlag, Berlin, 1939, second edition, 1970.CrossRefGoogle Scholar
[75] Kneser, Helmut, Private Notes of [64], 1921/1922.Google Scholar
[76] Kneser, Helmut, Private Notes of [66], 1922/1923.Google Scholar
[77] Mancosu, Paolo, Between Russell and Hilbert: Behmann on the foundations of mathematics, manuscript, 1998.Google Scholar
[78] Mancosu, Paolo, From Brouwer to Hilbert: The debate on the foundations of mathematics in the 1920s, New York, Oxford, 1998.Google Scholar
[79] Moore, Gregory, The emergence of first-order logic, 1988, in [4], pp. 93135.Google Scholar
[80] Moore, Gregory, Hilbert and the emergence of modern mathematical logic, Theoria, vol. 12 (1997), no. 1, pp. 6590.Google Scholar
[81] Peckhaus, Volker, Hilbertprogramm und Kritische Philosophie, Vandenhoeck and Ruprecht, Göttingen, 1990.Google Scholar
[82] Peckhaus, Volker, Hilberts Logik. Von der Axiomatik zur Beweistheorie, International Zeitschrift für Geschichte und Ethik der Naturwissenschaft, Technik und Medizin, vol. 3 (1995), pp. 6586.Google Scholar
[83] Poincaré, Henri, Les mathématiques et la logique, Revue de métaphysique et de morale, vol. 13 (1905), pp. 815–835, translated in [30, vol. 2], pp. 10211038.Google Scholar
[84] Poincaré, Henri, Les mathématiques et la logique, Revue de métaphysique et de morale, vol. 14 (1906), pp. 17–34, translated in [30, vol. 2], pp. 10381052.Google Scholar
[85] Poincaré, Henri, Les mathématiques et la logique, Revue de métaphysique et de morale, vol. 14 (1906), pp. 294–317, translated in [30, vol. 2], pp. 10521071.Google Scholar
[86] Purkert, Walter and Ilgauds, Hans Joachim, Georg Cantor, Basel, Boston, Stuttgart, 1987.Google Scholar
[87] Ramsey, Frank Plumpton, The foundations of mathematics, Proceedings of the London Mathematical Society, series 2, vol. 25 (1925), pp. 338384.Google Scholar
[88] Reid, Constance, Hilbert, Springer-Verlag, Berlin, Heidelberg, New York, 1970.Google Scholar
[89] Russell, Bertrand, Mathematical logic as based on the theory of types, American Journal of Mathematics, vol. 30 (1908), pp. 222262, reprinted in [101], pp. 150–182.Google Scholar
[90] Sieg, Wilfried, Foundations for analysis and proof theory, Synthese, vol. 60 (1984), no. 2, pp. 159200.Google Scholar
[91] Sieg, Wilfried, Relative Konsistenz, Computation theory and logic (Börger, E., editor), Lecture Notes in Computer Science, no. 270, Springer-Verlag, Berlin, 1987, pp. 360381.Google Scholar
[92] Sieg, Wilfried, Hilbert's program sixty years later, Journal of Symbolic Logic, vol. 53 (1988), no. 2, pp. 338348.Google Scholar
[93] Sieg, Wilfried, Relative consistency and accessible domains, Synthese, vol. 84 (1990), pp. 259297.Google Scholar
[94] Sieg, Wilfried, Eine neue Perspektive für das Hilbertsche Program, Dialektik (1994), pp. 163180.Google Scholar
[95] Sieg, Wilfried, Aspects of mathematical experience, Philosophy of mathematics today (Agazzi, E. and Darvas, G., editors), Kluwer, Dordrecht, 1997, pp. 195217.Google Scholar
[96] Skolem, Thoralf, Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre, 1922, translated in [101], pp. 290301.Google Scholar
[97] Skolem, Thoralf, Über die Grundlagendiskussionen in der Mathematik, Den syvende skandinaviske matematikerkongress i Oslo 19–22 August 1929, Broggers, Oslo, 1930, pp. 321.Google Scholar
[98] Stein, Howard, Logos, logic, logistike: Some philosophical remarks on the 19th century transformation of mathematics, 1988, in [4], pp. 238259.Google Scholar
[99] Toepell, Michael-Markus, Über die Entstehung von David Hilberts “Grundlagen der Geometrie”, Göttingen, 1986.Google Scholar
[100] Dalen, Dirk van, Hermann Weyl's intuitionistic mathematics, this Bulletin, vol. 1 (1995), no. 2, pp. 145169.Google Scholar
[101] Heijenoort, Jean van (editor), From Frege to Gödel, a source book in mathematical logic, 1879–1931, Harvard University Press, Cambridge, 1967.Google Scholar
[102] Neumann, Johann von, Die formalistische Grundlegung der Mathematik, Erkenntnis, vol. 2 (1931), pp. 116121.Google Scholar
[103] Weyl, Hermann, Über die Definitionen der mathematischen Grundbegriffe, Mathematisch-naturwissenschaftliche Blätter, vol. 7 (1910), pp. 93–95, 109113.Google Scholar
[104] Weyl, Hermann, Das Kontinuum, Veit, Leipzig, 1918, English translation by Pollard, S. and Bole, T., Dover Publications, New York, 1987.Google Scholar
[105] Weyl, Hermann, Über die neue Grundlagenkrise der Mathematik, Mathematische Zeitschrift, vol. 10 (1921), pp. 3979.Google Scholar
[106] Weyl, Hermann, Diskussionsbemerkungen zu dem zweiten Hilbertschen Vortrag über die Grundlagen der Mathematik, 1927, translated in [101], pp. 480484.Google Scholar
[107] Whitehead, Alfred North and Russell, Bertrand, Principia Mathematica, vol. 1, Cambridge University Press, Cambridge, 1910.Google Scholar
[108] Whitehead, Alfred North and Russell, Bertrand, Principia Mathematica, vol. 2, Cambridge University Press, Cambridge, 1912.Google Scholar
[109] Whitehead, Alfred North and Russell, Bertrand, Principia Mathematica, vol. 3, Cambridge University Press, Cambridge, 1913.Google Scholar
[110] Zermelo, E. (editor), Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Berlin, 1932.Google Scholar