Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-21T18:02:04.368Z Has data issue: false hasContentIssue false

Borel Reductibility and Classification of von Neumann Algebras

Published online by Cambridge University Press:  15 January 2014

Román Sasyk
Affiliation:
Instituto de Ciencias, Universidad Nacional de General Sarmiento, J. M. Gutierrez 1150, (1613) Los Polvorines, Argentinaand Instituto Argentino de Matemáticas-Conicet, Saavedra 15, Piso 3, (1083) Buenos Aires, Argentina, E-mail: [email protected]
Asger Törnquist
Affiliation:
Kurt Gödel Research Center, University of Vienna, Währinger Strasse 25, 1090 Vienna, AustriaE-mail: [email protected]

Abstract

We announce some new results regarding the classification problem for separable von Neumann algebras. Our results are obtained by applying the notion of Borel reducibility and Hjorth's theory of turbulence to the isomorphism relation for separable von Neumann algebras.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Becker, H. and Kechris, A., The descriptive set theory of Polish group actions, London Mathematical Society Lecture Notes, vol. 232, Cambridge University Press, 1996.CrossRefGoogle Scholar
[2] Bekka, B., de la Harpe, P., and Valette, A., Kazhdan'sproperty (T), New Mathematical Monographs, no. 11, Cambridge University Press, Cambridge, 2008.Google Scholar
[3] Blackadar, B., Operator algebras: Theory of C*-algebras and von Neumann algebras, Encyclopaedia of mathematical sciences, Operator Algebras and Non-commutative Geometry, III, vol. 122, Springer-Verlag, Berlin, 2006.Google Scholar
[4] Cherix, P., Cowling, M., Jolissaint, P., Julg, P., and Valette, A., Groups with the Haagerupproperty (Gromov a-T-menability), Progress in Mathematics, no. 197, Birkhäuser Verlag, 2001.Google Scholar
[5] Connes, A., Une classification des facteurs de type III, Annales Scientifiques de L'École Normale Superiéure, vol. 6 (1973), pp. 133258.Google Scholar
[6] Connes, A., Classification of infective factors, cases II1, II, IIIλ, λ ∞ 1, Annals of Mathematics, vol. 104 (1976), pp. 73115.Google Scholar
[7] Connes, A., On the classification of von Neumann algebras and their automorphisms, Symposia Mathematica, vol. XX (1976), pp. 435478.Google Scholar
[8] Connes, A., A factor of type II1 with countable fundamental group , Journal of Operator Theory, vol. 1 (1980), pp. 151153.Google Scholar
[9] Connes, A., Noncommutative geometry, Academic Press, 1994.Google Scholar
[10] Connes, A., Nombres de Betti L2 et facteurs de type II1 , Séminaire Bourbaki, vol. 2002–2003, Astérisque, no. 294, 2004, pp. 321333.Google Scholar
[11] Effros, E. G., The Borel space of von Neumann algebras on a separable Hilbert space, Pacific Journal of Mathematics, vol. 15 (1965), pp. 11531164.CrossRefGoogle Scholar
[12] Effros, E. G., Global structure in von Neumann algebras, Transactions of the American Mathematical Society, vol. 121 (1966), pp. 434454.Google Scholar
[13] Feldman, J. and Moore, C. C., Ergodic equivalence relations, cohomology and von Neumann algebras I, II, Transactions of the American Mathematical Society, vol. 234 (1977), pp. 289–324 and 325359.Google Scholar
[14] Foreman, M. and Weiss, B., An anti-classification theorem for ergodic measure preserving transformations, Journal ofthe European Mathematical Society, vol. 6 (2004), pp. 277292.Google Scholar
[15] Friedman, H. and Stanley, L., A Borel reducibility theory for classes of countable structures, The Journal of Symbolic Logic, vol. 54 (1989), no. 3, pp. 894914.Google Scholar
[16] Giordano, T. and Skandalis, G., On infinite tensor products of factors of type I2 , Ergodic Theory and Dynamical Systems, vol. 5 (1985), no. 4, pp. 565586.Google Scholar
[17] Haagerup, U., An example of a nonnuclear C*-algebra, which has the metric approximation property, Inventiones Mathematicae, vol. 50 (19781979), pp. 279293.CrossRefGoogle Scholar
[18] Haagerup, U. and Winsløw, C., The Effros–Maréchal topology in the space of von Neumann algebras. I, American Journal of Mathematics, vol. 120 (1998), no. 3, pp. 567617.CrossRefGoogle Scholar
[19] Haagerup, U. and Winsløw, C., The Effros–Maréchal topology in the space of von Neumann algebras. II, Journal of Functional Analysis, vol. 171 (2000), no. 2, pp. 401431.CrossRefGoogle Scholar
[20] Hjorth, G., Classification and orbit equivalence relations, Mathematical Surveys and Monographs, American Mathematical Society, 2000.Google Scholar
[21] Ioana, A., Kechris, A., and Tsankov, T., Subequivalence relations and positive definite functions, preprint, 2008.Google Scholar
[22] Kechris, A., Global aspects of ergodic group actions and equivalence relations, preprint, 2007.Google Scholar
[23] Kechris, A., Set theory and dynamical systems, Proceedings of the 13th international congress of Logic, Methodology and Philosophy of Science, 2007.Google Scholar
[24] Mekler, A., Stability of nilpotent groups of class 2 and prime exponent , The Journal of Symbolic Logic, vol. 46 (1981), no. 4, pp. 781788.Google Scholar
[25] Murray, F. and von Neumann, J., On rings of operators, Annals of Mathematics, vol. 37 (1936), pp. 116229.Google Scholar
[26] Pestov, V., Hyperlinear and sofic groups: a brief guide, this Bulletin, vol. 14 (2008), no. 4, pp. 449480.Google Scholar
[27] Popa, S., On a class of type II1 factors with Betti numbers invariants , Annals of Mathematics, vol. 163 (2006), pp. 809899.Google Scholar
[28] Popa, S., Strong rigidity of II1 factors arising from malleable actions of w-rigid groups, II , Inventiones Mathematicae, vol. 165 (2006), pp. 409451.Google Scholar
[29] Popa, S., Deformation and rigidity for group actions and von Neumann algebras, Proceedings of the ICM, vol. I, 20062007, pp. 445479.Google Scholar
[30] Popa, S. and Ozawa, N., On a class of II1 factors with at most one Cartan subalgebra , Annals of Mathematics, to appear.Google Scholar
[31] Powers, R., Representations of uniformly hyper finite algebras and their associated von Neumann rings, Annals of Mathematics, vol. 86 (1967), pp. 138171.Google Scholar
[32] Ringrose, J. R., The global theory of von Neumann algebras, Rendiconti del Seminario Matematico e Fisico di Milano, vol. 45 (1975), pp. 4963.Google Scholar
[33] Sasyk, R. and Tornquist, A., The classification problem for von Neumann factors, Journal of Functional Analysis, to appear.Google Scholar
[34] Tornquist, A., Orbit equivalence and actions of , The Journal of Symbolic Logic, vol. 71 (2005), pp. 265282.Google Scholar
[35] Tornquist, A., Conjugacy, orbit equivalence and classification of measure preserving group actions, Ergodic Theory and Dynamical Systems, (2008), pp. 117, electronic.Google Scholar
[36] Vaes, S., Rigidity results for Bernoulli actions and their von Neumann algebras (after S. Popa), Séminaire Bourbaki, vol. 2005-2006, Astérisque, no. 311, 2007, pp. 237294.Google Scholar
[37] Voiculescu, D., The analogues of entropy and of Fisher's information measure in free probability theory. III. The absence of Cartan subalgebras, Geometric and Functional Analysis, vol. 6 (1996), pp. 172199.Google Scholar
[38] Voiculescu, D., Free probability and the von Neumann algebras of free groups, Reports on Mathematical Physics, vol. 55 (2005), no. 1, pp. 127133.Google Scholar
[39] Voiculescu, D., Dykema, K., and Nica, A., Free random variables, CRM Monograph Series, no. 1, American Mathematical Society, 1992.CrossRefGoogle Scholar
[40] Woods, E. J., The classification offactors is not smooth, Canadian Journal of Mathematics, vol. 25 (1973), pp. 96102.Google Scholar
[41] Woods, J., ITPFI factors: an overview , Operator algebras and applications, vol. 38, Proceedings of Symposia in Pure Mathematics, no. 2, 1982, pp. 2542.Google Scholar