The methods of Bailey and of Jolly and Seber were used to provide maximum likelihood estimates of population parameters for Jackson’s classical mark–recapture experiments on males of the tsetse fly Glossina m. morsitans Westwood. These were compared with Jolly-Seber (J-S) estimates for the same fly from more recent work on Antelope Island, Lake Kariba, Zimbabwe. The Bailey estimates of birth and death rates and total population size had markedly lower variances than Jackson’s originals. Both sets of estimates provided moving averages over 6-week periods, whereas the Jolly-Seber analysis provided independent weekly estimates and their variance is consequently higher. Saturation deficit and maximum temperature (Tmax) accounted for 11 and 16% respectively of the variance in independent 4-week means of the weekly J-S survival probabilities. Analysis of covariance, carried out on a joint data set of smoothed J-S estimates of the survival probability in Tanzania and Zimbabwe, showed a significant effect of Tmax on survival. When this effect was removed, the survival probability in the Tanzania studies was found to be 8% lower than on Antelope Island. The two effects accounted for 50% of the variance in the joint data. When saturation deficit was substituted for Tmax, regression only accounted for 35% of the variance. If saturation deficit is important in determining tsetse survival, it must act on stages other than the post-teneral adult. Given the continuous increase in mortality, even at moderate temperatures, it is hard to envisage a direct effect of Tmax. There may be an indirect effect, however, via the number of hunger-related deaths resulting from the increase in the feeding rate with increasing temperature.