Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T12:54:47.567Z Has data issue: false hasContentIssue false

Worldwide variability of insecticide resistance mechanisms in the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae)

Published online by Cambridge University Press:  09 December 2008

M. Reyes*
Affiliation:
Instituto de Producción y Protección Vegetal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Casilla567, Valdivia, Chile
P. Franck
Affiliation:
Ecologie de la Production Intégrée, Plantes et systèmes de culture horticoles, INRA. Site Agroparc, 84914Avignon Cedex 9, France
J. Olivares
Affiliation:
Ecologie de la Production Intégrée, Plantes et systèmes de culture horticoles, INRA. Site Agroparc, 84914Avignon Cedex 9, France
J. Margaritopoulos
Affiliation:
Department of Biochemistry-Biotechnology, University of Thessaly, Ploutonos 26, 41221Larissa, Greece
A. Knight
Affiliation:
United States Department of Agriculture, Agricultural Research Service, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
B. Sauphanor
Affiliation:
Ecologie de la Production Intégrée, Plantes et systèmes de culture horticoles, INRA. Site Agroparc, 84914Avignon Cedex 9, France
*
*Author for correspondence Fax: +56 63 22 12 33 E-mail: [email protected]

Abstract

The activity of detoxifying enzymes (glutathione-S-transferases (GST), mixed-function oxidases (MFO), and esterases (EST)) and the presence of insensitive variants of target proteins (sodium channel and acetylcholinesterase) were examined in individual male and female codling moths. Twenty-nine populations from 11 countries and two laboratory strains were examined. Populations were classified as either unsprayed or sprayed. The ranges of enzyme activities across field populations varied 15-fold, 485-fold and fourfold for GST, MFO and EST, respectively. MFO was the only enzyme whose activity differed in a binomial classification of orchards based on their spray history. Few differences in enzyme activities were found due to sex among populations; and, in these cases, males had higher GST and lower MFO and EST activities than females. Activities of the three enzymatic systems across all populations were positively correlated. Populations from Greece, Argentina and Uruguay had significant percentages of moths with elevated GST and MFO activities. The co-occurrence of moths expressing both elevated MFO and low EST activities was found in conventional orchards from the Czech Republic and France. Chile was the only country where populations from treated orchards did not include a significant proportion of individuals with enhanced enzyme activity. The kdr mutation was found at significant levels in ten populations from five countries, including all French and Argentinean populations. The mutation in AChE was only detected in the Spanish population.

Type
Research Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Analytical Software (2003) Statistix 8 users manual. Analytical Software, Tallahassee, FL, USA.Google Scholar
Audemard, H. (1992) Population dynamics in codling moth. pp. 329338in Van der Geest, L.P.S. & Evenhuis, H.H. (Eds) Tortricid Pests: Their Biology, Natural Enemies and Control. Amsterdam, Elsevier Science Publishers.Google Scholar
Boivin, T., Chaber d'Hyères, C., Bouvier, J.C., Beslay, D. & Sauphanor, B. (2001) Pleiotropy of insecticide resistance in the codling moth Cydia pomonella. Entomologia experimentalis et applicata 99, 381386.CrossRefGoogle Scholar
Boivin, T., Bouvier, J.C., Chadoeuf, J., Beslay, D. & Sauphanor, B. (2003) Constraints on adaptative mutations in the codling moth Cydia pomonella (L.): measuring fitness trade-offs and natural selection. Heredity 90, 107113.CrossRefGoogle ScholarPubMed
Bouvier, J.C., Boivin, T., Beslay, D. & Sauphanor, B. (2002) Age-dependent response to insecticide and enzymatic variation in susceptible and resistant codling moth larvae. Archives of Insect Biochemistry and Physiology 51, 5566.Google Scholar
Bradford, M. (1976) A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Brun-Barale, A., Bouvier, J.C., Pauron, D., Bergé, J.B. & Sauphanor, B. (2005) Involvement of a sodium channel mutation in pyrethroid resistance in Cydia pomonella L. and development of a diagnostic test. Pest Management Science 61, 549554.CrossRefGoogle ScholarPubMed
Bush, M., Abdel-Aal, Y. & Rock, G. (1993) Parathion resistance and esterase activity in codling moth (Lepidoptera: Tortricidae) from North Carolina. Journal of Economic Entomology 86, 660666.CrossRefGoogle Scholar
Cassanelli, S., Reyes, M., Rault, M., Manicardi, G.C. & Sauphanor, B. (2006) Acetylcholinesterase mutation in an insecticide resistant population of the codling moth Cydia pomonella (L.). Insect Biochemistry and Molecular Biology 36, 642653.CrossRefGoogle Scholar
Cichón, L., Fernández, D., Soleño, J., Montagna, C., Anguiano, L. & Pechen de D'Angelo, A. (2003) Ensayos de toxicidad en poblaciones de adultos de Cydia pomonella (Lepidoptera: Tortricidae) del Alto Valle (Argentina). p. 75 in Resúmenes XXV Congreso Nacional de Entomología, Chile.Google Scholar
Croft, B.A. (1982) Apple pests management. pp. 465498in Metcalf, L. & Luckman, W.H. (Eds) Introduction to Pest Management (2nd edn). John Wiley and Sons, New York.Google Scholar
Daborn, P.J., Yen, J.L., Bogwitz, M.R., Le Goff, G., Feil, E., Jeffers, S., Tijet, N., Perry, T., Heckel, D., Batterham, P., Feyereisen, R., Wilson, T.G. & ffrench-Constant, R. (2002) A single P450 allele associated with insecticide resistance in Drosophila. Science 297, 22532256.Google Scholar
De Sousa, G., Cuany, A., Brun, A., Amichot, M., Rahmani, R. & Berge, J. (1995) A microfluorometric method for measuring Ethoxycoumarin-O-Deethylase activity on individual Drosophila melanogaster abdomens: interest for screening resistance in insect populations. Analytical Biochemistry 229, 8691.Google Scholar
Espinoza, J.L., Fuentes-Contreras, E., Barros, W. & Ramírez, C. (2007) Utilización de microsatellites para la determinación de la variabilidad genética de la polilla de la manzana Cydia pomonella L. (Lepidoptera: Tortricidae) en Chile central. Agricultura Técnica 67(3), 244252.Google Scholar
Franck, P., Reyes, M., Olivares, J. & Sauphanor, B. (2007) Genetic differentiation in the codling moth: comparison between microsatellite and insecticide resistant markers. Molecular Ecology 16, 35543564.Google Scholar
Field, L.M. & Devonshire, A.L. (1998) Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochemical Journal 330, 169173.CrossRefGoogle ScholarPubMed
Fuentes-Contreras, E., Reyes, M., Barros, W. & Sauphanor, B. (2007) Evaluation of Azinphosmethyl Resistance and Activity of Detoxifying Enzymes in Codling Moth (Lepidoptera: Tortricidae) From Central Chile. Journal of Economic Entomology 100(2), 551556.Google Scholar
Fuentes-Contreras, E., Espinoza, J.L., Lavandero, B. & Ramírez, C. (2008) Population Genetic Structure of Codling Moth (Lepidoptera: Tortricidae) from Apple Orchards in Central Chile. Journal of Economic Entomology 101(1), 190198.CrossRefGoogle ScholarPubMed
Guennelon, G., Audemard, H., Fremond, J.C. & El Idrissi Ammari, M.A. (1981) Progrès réalisés dans l'élevage de la Carpocapse (Laspeyresia pomonella) sur milieu artificiel. Agronomie 1, 5964.Google Scholar
Kaminbelsky, N. & Wool, D. (1993) Ecological aspects of digestive enzyme covariation in almond aspects of digestive enzyme covariation in Almond moth larvae, Ephestia cautella (Walker) (Lepidoptera, Phyticidae). Journal of Stored Products 29(4), 323332.Google Scholar
May, R.R. & Dobson, A.P. (1986) Population dynamics and the rate of evolution of insecticide resistance. pp. 170193in National Academy of Sciences (Eds) Pesticide Resistance: Strategies and Tactics for Management. Washington, DC, National Academy Press.Google Scholar
Nauen, R. & Stumpf, N. (2002) Fluorometric microplate assay to measure glutathione-S-transferase activity in insects and mites using monochlorobimane. Analytical Biochemistry 303, 194198.Google Scholar
Reyes, M., Bouvier, J.C., Boivin, T., Sauphanor, B. & Fuentes-Contreras, E. (2004) Susceptibilidad a insecticidas y actividad enzimática en Cydia pomonella L. (Lepidoptera: Tortricidae) proveniente de tres huertos de manzano de la región del Maule, Chile. Agricultura Técnica 64(3), 229237.CrossRefGoogle Scholar
Reyes, M., Franck, P., Charmillot, P.J., Ioriatti, C., Olivares, J., Pasqualini, E. & Sauphanor, B. (2007) Diversity of insecticide resistance mechanisms and spectrum in European populations of the Codling moth, Cydia pomonella. Pest Management Science 63, 890902.Google Scholar
Reuveny, H. & Cohen, E. (2004) Resistance of the codling moth Cydia pomonella (L.) (Lep; Tortricidae) to pesticides in Israel. Journal of Applied Entomology 128, 645651.Google Scholar
Rousset, F. (2008) Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8, 103106.Google Scholar
Sauphanor, B., Cuany, A., Bouvier, J.C., Brose, V. & Berge, J.B. (1997) Mechanism of resistance to deltamethrin in field populations of Cydia pomonella L. (Lepidoptera: Tortricidae). Pesticide Biochemistry and Physiology 58, 109117.Google Scholar
Sauphanor, B., Brosse, V., Monier, C. & Bouvier, J.C. (1998) Differencial ovicidal and larvicidal resistance to benzoylureas in the codling moth, Cydia pomonella. Entomologia Experimentalis et Applicatta 88, 247253.CrossRefGoogle Scholar
Sauphanor, B., Bouvier, J.C., Beslay, D., Bosch, D. & Avilla, J. (2000) Mechanisms of azinphos-methyl resistance in a strain of Cydia pomonella from southern Europe. 21st International Congress of Entomology, 20–26 August, Iguassu, Brazil.Google Scholar
Soleño, J., Montagna, C., Anguiano, L., Fernández, D. & Pechén de D'Angelo, A. (2003) Toxicidad de esfenvalerato y Metil azinfos en poblaciones de larvas diapausantes de Cydia pomonella (Lepidoptera: Tortricidae) del alto valle de Río Negro y Neuquén. p. 75 in Resúmenes XXV Congreso Nacional de Entomología, Chile.Google Scholar
Soleño, J., Anguiano, L., Pechén de D'Angelo, A. & Montagna, C. (2004) Tolerancia a Metilazinfos en una población de larvas diapausantes de Cydia pomonella en el alto valle de Río Negro y Neuquén. p. 8 in Resúmenes XXVI Congreso Nacional de Entomología, Chile.Google Scholar
Taylor, F. & Feyereinsen, R. (1996) Molecular biology and evolution of resistance to toxicants. Molecular Biology and Evolution 13, 719734.Google Scholar
Thwaite, W.G., Williams, D.G. & Hately, A.M. (1993) Extent and significance of azinphos-methyl resistance in codling moth in Australia. Pest Control and Sustainable Agriculture 93, 166168.Google Scholar
Timm, A.E., Geertsema, H. & Warnich, L. (2006) Gene flow among Cydia pomonella (Lepidoptera: Tortricidae) geographic and host populations in South Africa. Journal of Economic Entomology 99, 341348.Google Scholar
Ulrich, V. & Weber, P. (1972) The O-dealkylation of 7-ethoxycoumarine by liver microsomes: a direct fluorometric test. Hope-Serler's Z Physiological Chemistry 353, 11711177.Google Scholar
Varela, L.G., Welter, S.C., Jones, V.P., Brunner, J.F. & Rield, H. (1993) Monitoring and characterization of insecticide resistance in Codling moth (Lepidoptera: Tortricidae) in four Western States. Journal of Economic Entomology 86(1), 110.Google Scholar
Villatte, F., Ziliani, P., Marcel, V., Menozzi, P. & Fournier, D. (2000) High number of mutations in insect acetylcholinesterase may provide insecticide resistance. Pesticide Biochemistry and Physiology 67, 95102.CrossRefGoogle Scholar
Waldner, W. (1993) Rückblick und Vorschau auf die Bekämpfung des Apfelwicklers. Obstbau-Weinbau 12, 355357.Google Scholar
Walsh, P.S., Metzger, D.A. & Higuchi, R. (1991) Chelex (R) 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 507.Google Scholar