Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T19:11:59.217Z Has data issue: false hasContentIssue false

Variation in tomato host response to Bemisia tabaci (Hemiptera: Aleyrodidae) in relation to acyl sugar content and presence of the nematode and potato aphid resistance gene Mi

Published online by Cambridge University Press:  09 March 2007

G. Nombela
Affiliation:
Departamento de Protección Vegetal, Centro de Ciencias Medioambientales, CSIC, c/ Serrano 115 Dpdo, 28006 Madrid, Spain
F. Beitia
Affiliation:
INIA, Departamento de Protección Vegetal, Ctra. De La Coruña, Km. 7.5, 28040 Madrid, Spain
M. Muñiz*
Affiliation:
Departamento de Protección Vegetal, Centro de Ciencias Medioambientales, CSIC, c/ Serrano 115 Dpdo, 28006 Madrid, Spain
*
*Fax: 34 91 564 08 00 E-mail: [email protected]

Abstract

Two commercial cultivars of tomato, Alta and Peto 95, the accession line number LA716 of Lycopersicon pennellii and lines 94GH-006 and 94GH-033 (backcrosses between Peto 95 and LA716), with different leaf acyl sugar contents were screened for resistance to Bemisia argentifolii Bellows & Perring (corresponding to the Spanish B-biotype of Bemisia tabaci (Gennadius)), in greenhouse- and field-no-choice experiments. There was no oviposition on LA716 (with the highest acyl sugar content) while the greatest fecundity and fertility values were observed on the cultivar Alta (no acyl sugar content). However, no clear relationship was found between the low acyl sugar content in the other tomato cultivars tested and whitefly reproduction. Thus, resistance to B. tabaci did not appear to correlate with acyl sugar content below a threshold level of 37.8 μg cm-2leaf. In a greenhouse choice-assay, B. tabaci exhibited reduced host preference and reproduction on the commercial tomato cultivars Motelle, VFN8 and Ronita all of which carry the Mi gene resistance to Meloidogyne nematodes and the aphid Macrosiphum euphorbiae (Thomas), than on the Mi-lacking cultivars Moneymaker, Rio Fuego and Roma. When data of Mi-bearing plants were pooled, the mean values for daily infestation and pupal production of B. tabaci were significantly lower than those of Mi-lacking plants. This reflected a level of antixenosis- and antibiosis-based resistance in commercial tomato and indicated that Mi, or another closely linked gene, might be implicated in a partial resistance which was not associated either with the presence of glandular trichomes or their exudates. These findings support the general hypothesis for the existence of similarities among the resistance mechanisms to whiteflies, aphids and nematodes in commercial tomato plants.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bedford, I.D., Briddon, R.W., Brown, J.K., Rosell, R.C. & Markham, P.G. (1994) Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Annals of Applied Biology 125, 311325.Google Scholar
Bellows, T.S., Perring, T.M., Gill, R.J. & Headrick, D.H. (1994) Description of a species of Bemisia (Homoptera: Aleyrodidae). Annals of the Entomological Society of America 87, 195206.CrossRefGoogle Scholar
Berlinger, M.J. (1986) Host plant resistance to Bemisia tabaci. Agriculture, Ecosystems and Environment 17, 6982.Google Scholar
Blua, M.J. & Toscano, N. (1994) Bemisia argentifolii (Homoptera: Aleyrodidae) development and honeydew production as a function of cotton nitrogen status. Environmental Entomology 23, 317321.CrossRefGoogle Scholar
Brown, J.K. (1994) Current status of Bemisia tabaci as a pest and virus vector in world agroecosystems. FAO Plant Protection Bulletin 42, 332.Google Scholar
Brown, J.K. & Bird, J. (1992) Whitefly-transmitted geminiviruses and associated disorders in the Americas and the Caribbean basin. Plant Disease 76, 220225.Google Scholar
Brown, J.K. & Bird, J. (1996) Introduction of an exotic whitefly (Bemisia) vector facilitates secondary spread of jatropha mosaic virus, a geminivirus previously vectored exclusively by the “jatropha” biotype. pp. 351353in Gerling, D. & Mayer, R.T. (Eds) Bemisia 1995: Taxonomy, biology, damage, control and management. Andover, Hants, Intercept.Google Scholar
Byrne, D. & Bellows, T.S. (1991) Whitefly biology. Annual Review of Entomology 36, 431457.CrossRefGoogle Scholar
Carnero, A., Montesdeoca, M., Pérez, F., Silverio, A. and Rodríguez, P. (1990) Presencia de Bemisia tabaci (Genn.) en cultivos comerciales de hortícolas y ornamentales en la isla de Tenerife (Islas Canarias). Cuadernos de Fitopatología, 4° Trimestre 25, 176180.Google Scholar
Channarayappa, Shivashankar, G., Muniyappa, V. & Frist, R. (1992) Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Canadian Journal of Botany 70, 21842192.Google Scholar
Fernandes, G.W. (1990) Hypersensitivity: a neglected plant resistance mechanism against insect herbivores. Environmental Entomology 19, 11731182.CrossRefGoogle Scholar
Flor, H.H. (1955) Host-parasite interaction in flax rust. Its genetics and other implications. Phytopathology 45, 680685.Google Scholar
Gentile, A.G., Webb, R.E. & Stoner, A.K. (1968) Resistance in Lycopersicon and Solanum to greenhouse whiteflies. Journal of Economic Entomology 61, 13551357.CrossRefGoogle Scholar
Goffreda, J.C. & Mutschler, M.A. (1989) Inheritance of potato aphid resistance in hybrids between Lycopersicon esculentum and L. pennellii. Theoretical and Applied Genetics 78, 210216.CrossRefGoogle ScholarPubMed
Goffreda, J.C., Mutschler, M.A. & Tingey, W.M. (1988) Feeding behaviour of potato aphid affected by glandular trichomes of wild tomato. Entomologia Experimentalis et Applicata 48, 101107.Google Scholar
Goffreda, J.C., Mutschler, M.A., Avé, D.A., Tingey, W.M. & Steffens, J.C. (1989) Aphid deterrence by glucose esters in glandular trichome exudate of the wild tomato, Lycopersicon pennellii. Journal of Chemical Ecology 15, 21352147.CrossRefGoogle ScholarPubMed
Goffreda, J.C., Steffens, J.C. & Mutschler, M.A. (1990) Association of epicuticular sugars with aphid resistance in hybrids with wild tomato. Journal of the American Society of Horticultural Science 115, 161165.CrossRefGoogle Scholar
Guirao, P., Beitia, F. & Cenis, J.L. (1997) Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research 87, 587593.CrossRefGoogle Scholar
Hassan, A.A., Mayzard, H.M., Moustafa, S.E. & Nakhla, M.K. (1982) Assessment of tomato yellow leaf curl virus disease resistance in the genus Lycopersicon. Egyptian Journal of Horticulture 9,103116Google Scholar
Hawthorne, D.J., Shapiro, J.A., Tingey, W.H. & Mutschler, M.A. (1992) Trichome-borne and artificially applied acyl sugars of wild tomato deter feeding and oviposition of the leafminer Liriomyza trifolii. Entomologia Experimentalis et Applicata 65, 6573.CrossRefGoogle Scholar
Heinz, K.M. & Zalom, F.G. (1995) Variation in trichome-based resistance on Bemisia argentifolii (Homoptera: Aleyrodidae) oviposition on tomato. Journal of Economic Entomology 88, 14941502.CrossRefGoogle Scholar
Johnson, A.W., Severson, R.F., Jackson, D.M., Gwyn, G.R. & Chaplin, J.F. (1981) Tobacco budworm infestation on early, late-planted and sucker regrowth resistant and susceptible tobacco. 29th Tobacco Workers ConferenceLexington, KentuckyJanuary 19–22.Google Scholar
Juvik, J.A., Shapiro, J.A., Young, T.E. & Mutschler, M.A. (1994) Acylglucoses from wild tomatoes alter behaviour and reduce growth and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Economic Entomology 87, 482492.CrossRefGoogle Scholar
Kaloshian, I., Lange, W.H. & Williamson, V.M. (1995) An aphid-resistance locus is tightly linked to the nematode-resistance gene, Mi, in tomato. Proceedings of the National Academy of Sciences, USA 92, 622625.CrossRefGoogle Scholar
Kisha, J.S. (1981) Observation on the trapping of the whitefly Bemisia tabaci by glandular hairs on tomato leaves. Annals of Applied Biology 97, 123127.Google Scholar
Kishaba, A.N., Castle, S., McCreight, J.D. & Desjardins, P.R. (1992) Resistance of white-flowered gourd to sweetpotato whitefly. HortScience 27, 12171222.CrossRefGoogle Scholar
Lange, W.H. & Bronson, L. (1981) Insect pests of tomatoes. Annual Review of Entomology 26, 345371.Google Scholar
Lemke, C.A. & Mutschler, M.A. (1984) Inheritance of glandular trichomes in crosses between Lycopersicon esculentum and Lycopersicon pennellii. Journal of the American Society of Horticultural Science 109, 592596.Google Scholar
Liedl, B.E., Lawson, D.E., White, K.K., Shapiro, J.A., Cohen, D.E., Carson, W.G., Trumble, J.T. & Mutschler, M.A. (1995) Acyl sugars of wild tomato Lycopersicon pennellii alters settling and reduces oviposition of Bemisia argentifolii (Homoptera: Aleyrodidae). Journal of Economic Entomology 88, 743748.CrossRefGoogle Scholar
Luckwill, L.C. (1943) The genus Lycopersicon, a historical, biological and taxonomic survey of the wild and cultivated tomato. Aberdeen University Studies. No. 120. Aberdeen University Press.Google Scholar
Markham, P.G., Bedford, I.D., Liu, S., Frolich, D.F., Rosell, R. & Brown, J.K. (1996) The transmission of geminiviruses by biotypes of Bemisia tabaci (Gennadius). pp. 6975in Gerling, D. & Mayer, R.T. (Eds) Bemisia 1995: Taxonomy, biology, damage, control and management. Andover, Hants, Intercept.Google Scholar
Milligan, S.B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P. & Williamson, V.M. (1998) The root-knot nematode gene Mi from tomato is a member of the leucine zipper-nucleotide binding leucine-rich repeat family of plant genes. Plant Cell 10, 13071320,CrossRefGoogle ScholarPubMed
Moriones, E., Arnó, J., Accotto, G.P., Noris, E. & Cavallarin, L. (1993) First report of tomato yellow leaf curl virus in Spain. Plant Disease 77, 953.CrossRefGoogle Scholar
Muñiz, M. & Nombela, G. (1997) Development, oviposition and female longevity of two biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on three varieties of Capsicum annuum L. International Organization for Biological and Integrated Control of Noxious Animals and Plants/West Palaearctic Regional Section Bulletin 20, 143146.Google Scholar
Panda, N. & Khush, G.S. (1995) Host plant resistance to insects. 431 pp. Wallingford, Oxon, CAB International.Google Scholar
Perring, T.M., Cooper, A.D., Rodriguez, R.J., Farrar, C.A. & Bellows, T.S. (1993) Identification of a whitefly species by genomic and behavioural studies. Science 259, 7477.Google Scholar
Ponti, O.M.B., de, Romanow, L.R. & Berlinger, M.J. (1990) Whitefly-plant relationships: plant resistance pp. 91106in Gerling, D. (Ed.) Whiteflies: their bionomics, pest status and management. Andover, Hants, Intercept.Google Scholar
Roberts, P.A. & Thomason, I.J. (1986) Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes. Plant Disease 70, 547551.Google Scholar
Rodriguez, A.E., Tingey, W.M. & Mutschler, M.A. (1993) Acyl sugars of Lycopersicon penellii deter settling and feeding of the green peach aphid (Homoptera: Aphididae). Journal of Economic Entomology 86, 3439.CrossRefGoogle Scholar
Rossi, M., Goggin, F.L., Milligan, S.B., Kaloshian, I., Ullman, D.E. & Williamson, V.M. (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Sciences, USA 95, 97509754.Google Scholar
Russell, G.E. (1978) Plant breeding for pest and disease resistance. 485 pp. London/Boston, Butterworth.Google Scholar
Schuster, D.J., Stansly, P.A. & Polston, J.A. (1996) Expressions of plant damage by Bemisia pp. 153165in Gerling, D. & Mayer, R.T. (Eds) Bemisia 1995: Taxonomy, biology, damage, control and management. Andover, Hants, Intercept.Google Scholar
Shapiro, J.A., Steffens, J.C. & Mutschler, M.A. (1994) Acylsugars of the wild tomato Lycopersicon pennellii in relation to geographic distribution of the species. Biochemical Systematics and Ecology 22, 545561.Google Scholar
Simmons, A.M. (1994) Oviposition on vegetables by Bemisia tabaci (Homoptera: Aleyrodidae): temporal and leaf surface factors. Environmental Entomology 23, 381389.CrossRefGoogle Scholar
Smith, P.G. (1944) Embryo culture of a tomato species hybrid. Proceedings of the American Society of Horticultural Science 44, 413416.Google Scholar
StatSoft (1994) Statistica version 4.5 for the Windows operating system, reference for statistical procedures. Tulsa, Oklahoma, Statsoft.Google Scholar
Steffens, J.C. & Walters, D.S. (1991) Biochemical aspects of glandular trichome-mediated insect resistance in the Solanaceae pp. 136149in: Hedin, P.A. (Ed.), Naturally occurring pest bioregulators. ACS Symposium series 449. American Chemical Society. Washington, DC.Google Scholar
van Emden, H.F. (1990) The interaction of host plant resistance with other control measures. Proceedings of the Brighton Crop Protection Conference 3, 939949.Google Scholar
Walker, G.P. & Perring, T.M. (1994) Feeding and oviposition behaviour of whiteflies (Homoptera: Aleyrodidae) interpreted from AC electronic feeding monitor waveforms. Annals of the Entomological Society of America 87, 363374.Google Scholar
Williams, S.J., Kennedy, G.G., Yamamoto, R.T., Thacker, J.D. & Bordner, J. (1980) 2-Tridecanone: A naturally occurring insecticide from the wild tomato Lycopersicon hirsutum f. glabratum. Science 207, 888889.CrossRefGoogle ScholarPubMed