Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T17:12:21.686Z Has data issue: false hasContentIssue false

Tree holes as larval habitats for Aedes aegypti in urban, suburban and forest habitats in a dengue affected area

Published online by Cambridge University Press:  21 July 2015

C. Mangudo
Affiliation:
Instituto de Investigaciones en Energía No Convencional (INENCO, UNSa- CONICET), Universidad Nacional de Salta, Av. Bolivia 5150, A4400FVY, Salta, Argentina Instituto de Investigaciones en Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta, Alvarado 751 Orán, 4530 Salta, Argentina
J.P. Aparicio
Affiliation:
Instituto de Investigaciones en Energía No Convencional (INENCO, UNSa- CONICET), Universidad Nacional de Salta, Av. Bolivia 5150, A4400FVY, Salta, Argentina Instituto de Investigaciones en Enfermedades Tropicales, Sede Regional Orán, Universidad Nacional de Salta, Alvarado 751 Orán, 4530 Salta, Argentina Mathematical, Computational and Modeling Sciences Center, Arizona State University, PO Box 871904, Tempe, AZ 85287-1904, USA
R.M. Gleiser*
Affiliation:
Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales-IMBIV (CONICET-UNC), Facultad de Ciencias Agropecuarias, Av. Valparaíso sn (5016) Córdoba, Argentina Cátedra de Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sársfield 299 (5000) Córdoba, Argentina
*
*Author for correspondence Phone: +54 (0351) 4334105/16/17 Fax: +54 (0351) 4334118 E-mail: [email protected]

Abstract

Aedes aegypti (L.) (Diptera: Culicidae), the main vector of dengue and urban yellow fever in the world, is highly adapted to the human environment. Artificial containers are the most common larval habitat for the species, but it may develop in tree holes and other phytotelmata. This study assessed whether tree holes in San Ramón de la Nueva Orán, a city located in subtropical montane moist forest where dengue outbreaks occur, are relevant as larval habitat for Ae. aegypti and if the species may be found in natural areas far from human habitations. Water holding tree holes were sampled during 3 years once a month along the rainy season using a siphon bottle, in urban and suburban sites within the city and in adjacent forested areas. Larvae and pupae were collected and the presence and volume of water in each tree hole were recorded. Finding Ae. aegypti in forested areas was an isolated event; however, the species was frequently collected from tree holes throughout the city and along the sampling period. Moreover, larvae were collected in considerably high numbers, stressing the importance of taking into account these natural cavities as potential reinfestation foci within dengue control framework.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anosike, J., Nwoke, B., Okere, A., Oku, E., Asor, J., Egbe, I. & Adimike, D. (2007) Epidemiology of tree-hole breeding mosquitoes in the tropical rainforest of Imo State, South-East Nigeria. Annals of Agricultural and Environmental Medicine 14, 3138.Google Scholar
Bergero, P.E., Ruggerio, C.A., Lombardo, R., Schweigmann, N.J. & Solari, H.G. (2013) Dispersal of Aedes aegypti: field study in temperate areas and statistical approach. Journal of Vector Borne Diseases 50, 163170.Google Scholar
Bradshaw, W.E. & Holzapfel, C.M. (1986) Habitat segregation among European tree hole mosquitoes. National Geographic Research 2, 167178.Google Scholar
Brown, A.D., Grau, H.R., Malizia, L. & Grau, A. (2001) Los bosques nublados de la Argentina. pp. 623659 in Brown, A.D. & Kappelle, M. (Eds) Bosques Nublados de Latinoamérica. Editorial INBio, Costa Rica.Google Scholar
Burkot, T.R., Handzel, T., Schmaedick, M.A., Tufa, J., Roberts, J.M. & Graves, P.M. (2007) Productivity of natural and artificial containers for Aedes polynesiensis and Aedes aegypti in four American Samoan villages. Medical and Veterinary Entomology 21, 2229.Google Scholar
Campos, R.E., Spinelli, G. & Mogi, M. (2011) Culicidae and Ceratopogonidae (Diptera: Nematocera) inhabiting phytotelmata in Iguazú National Park, Misiones Province, subtropical Argentina. Revista de la Sociedad Entomológica Argentina 70, 111118.Google Scholar
Copeland, R.S. & Craig, G.B. (1990) Habitat Segregation among Treehole Mosquitoes (Diptera: Culicidae) in the Great Lakes Region of the United States. Annals of the Entomological Society of America 83, 10631073.CrossRefGoogle Scholar
Darsie, R.F. (1985) Mosquitoes of Argentina. Part I. Keys for identification of adult females and fourth stage larvae (Diptera: Culicidae). Mosquito Systematics Journal 17, 153253.Google Scholar
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. & Robledo, C.W. (2014) InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available online at http://www.infostat.com.ar Google Scholar
Estallo, E.L., Más, G., Vergara-Cid, C., Lanfri, M.A., Ludueña-Almeida, F., Scavuzzo, C.M., Introini, M.V., Zaidenberg, M. & Almirón, W.R. (2013) Spatial patterns of high Aedes aegypti oviposition activity in Northwestern Argentina. PLoS ONE 8(1), e54167. doi: 10.1371/journal.pone.0054167 Google Scholar
Forattini, O.P. (1996) Culicidologia Médica. Principios Gerais, Morfologia, Glossario Taxonómico, vol. 1. Ed Univ. São Paulo, São Paulo.Google Scholar
Forattini, O.P. (2002). Culicidologia Médica. pp. 860. Ed Univ. de São Paulo, São Paulo.Google Scholar
Gubler, D.J. (2004) The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comparative Immunology, Microbiology and Infectious Diseases 27, 319330.CrossRefGoogle ScholarPubMed
INDEC, Instituto Nacional de Estadística y Censos (2010) Resultados correspondientes al censo nacional de población, hogares y viviendas. Buenos Aires: Argentina. Available online at http://www.indec.gob.ar (accessed 2015).Google Scholar
INTA. (2004) Instituto Nacional de Tecnología Agropecuaria. pp. 13> in Arroyo, E.R. (Ed.) Diagnostico Productivo del Departamento de Orán. Orán: INTA Orán. Available online at http://inta.gob.ar/documentos/diagnostico-productivo-del-departamento-de-oran (accessed 2014).Google Scholar
Malta Varejão, J.B., Dossantos, C.B., Rezende, H.R., Bevilacqua, L.C. & Falqueto, A. (2005) Criadouros de Aedes (Stegomyia) aegypti (Linnaeus, 1762) em bromélias nativas na Cidade de Vitória. Revista da Sociedade Brasileira de Medicina Tropical 38, 238240.Google Scholar
Mangudo, C., Aparicio, J.P. & Gleiser, R.M. (2011) Tree holes as larval habitats for Aedes aegypti in public areas in Aguaray, Salta province, Argentina. Journal of Vector Ecology 36, 227230.CrossRefGoogle ScholarPubMed
Marquetti, M.C., Suárez, S., Bisset, J. & Leyva, M. (2005) Reporte de hábitats utilizados por Aedes aegypti en Ciudad de La Habana, Cuba. Revista Cubana de Medicina Tropical 57, 159–61.Google Scholar
Mercer, D.R. (1991) Tannic acid concentration mediates Aedes sierrensis development and parasitism by Lambornella clarki . Proceedings of the California Mosquito Vector Control Association 59, 101107.Google Scholar
Micieli, M.V. & Campos, R.E. (2003) Oviposition activity and seasonal pattern of a population of Aedes (Stegomyia) aegypy (L.) (Diptera: Culicidae) in Subtropical Argentina. Memórias do Instituto Oswaldo Cruz 98, 659663.Google Scholar
Mocellin, M.G., Simões, T.C., Fernandes Silvado Nascimento, T., Teixeira, M.L.F., Lounibos, L.P. & Lourenço De Oliveira, R. (2009) Bromeliad inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus? Memórias do Instituto Oswaldo Cruz 104, 11711176.Google Scholar
Müller, G.A. & Marcondes, C.B. (2006) Bromeliad associated mosquitoes from Atlantic forest in Santa Catarina Island, southern Brazil (Diptera: Culicidae), with new records for the state of Santa Catarina. Iheringia 96, 315319.CrossRefGoogle Scholar
Porter, J., Evans, B.R. & Hughes, J.H. (1961) The significance of water-holding cavities of trees as mosquito foci with special reference to Aedes aegypti control programs. Mosquito News 21, 234237.Google Scholar
Reinert, J.F. (2001) Revised list of abbreviations for genera and subgenera of Culicidae (Diptera) and notes on generic and subgeneric changes. Journal of the American Mosquito Control Association l7, 5155.Google Scholar
Reiter, P., Amador, M.A., Anderson, R.A. & Clark, G.G. (1995) Short report: dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. American Journal of Tropical Medicine and Hygiene 52, 177179.Google Scholar
Rondan Dueñas, J.C., Albrieu Llinás, G., Panzetta-Dutari, G.M. & Gardenal, C.N. (2009) Two different routes of colonization of Aedes aegypti in Argentina from neighboring Countries. Journal of Medical Entomology 46, 13441354.Google Scholar
Stein, M., Dantur Juri, M.J., Oria, G.I. & Ramirez, P.G. (2013) Aechmea distichantha (Bromeliaceae) Epiphytes, potential new habitat for Aedes Aegypti and Culex quinquefasciatus (Diptera: Culicidae) collected in the province of Tucumán, Northwestern Argentina. Florida Entomologist 96, 12021206.Google Scholar
Torres, J. (2010) Dengue, casos: Actualización – Latino América. ProMED-mail. Archive 20100704.2227 (accessed 12 November 2010).Google Scholar
Valotto, C.F., Silva, H.H., Cavasin, G., Geris, R., Rodrigues Filho, E. & da Silva, I.G. (2011) Ultrastructural alterations in larvae of Aedes aegypti subject to labdane diterpene isolated from Copaifera reticulata (Leguminosae) and a fraction enriched with tannins of Magonia pubescens (Sapindaceae). Revista da Sociedade Brasileira de Medicina Tropical 44, 194200.CrossRefGoogle Scholar