Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T06:58:24.889Z Has data issue: false hasContentIssue false

Temporal and spatial patterns in pheromone-trap catches of Helicoverpa spp. (Lepidoptera: Noctuidae) in cotton-growing areas of Australia

Published online by Cambridge University Press:  10 July 2009

G. P. Fitt
Affiliation:
Division of Entomology, CSIRO, P. O. Box 59, Narrabri, New South Wales 2390, Australia
M. P. Zalucki
Affiliation:
Department of Entomology, University of Queensland, St. Lucia, Queensland 4067, Australia
P. Twine
Affiliation:
Entomology Branch, Department of Primary Industries, Toowoomba, Queensland 4350, Australia

Abstract

Helicoverpa armigera (Hübner) and H. punctigera (Wallengren) are major pests of cotton and other field crops in Australia. Using data on then abundance of males in pheromone traps at many sites over three seasons, the spatial and temporal variation in trap catch of both species were examined using Taylor's power law and spatial autocorrelation. The distribution of both species was highly clumped, both temporally and spatially. Regression Coefficients for the relationship of spatial mean to variance (bs) were similar to those for noctuids in general, while similarly derived temporal values (bt) for H. armigera fell towards the upper end of the noctuid range and those for H. punctigera well above the range given by Taylor & Woiwood (1980). Taylor and colleagues suggested that patterns of dispersion are species-specific and that they reflect density-dependent patterns of movement towards and away from centres of abundance. Although the relationship between variance and mean abundance for both spatial and temporal aspects of trap catches of Helicoverpa is well fitted by Taylor's power law, it is argued that these patterns of dispersion are a consequence of demographic and environmental stochasticity. Little need is to invoke specific density-dependent behaviours as the major factor responsible in this case. In addition, while Taylor's power law indicated both species had a similar clumped distribution, limited autocorrelation analysis suggested a random dispersion of pheromone-trap catches for H. armigera and small scale patchiness (over distances of 1–2 km) in trap catches of H. punctigera.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. M., Gordon, D. M., Crawley, M. J. & Hassell, M. P. (1982). Variability in the abundance of animal and plant species.—Nature, Lond. 296, 245248.CrossRefGoogle Scholar
Andrewartha, H. G. & Birch, L. C. (1954). The distribution and abundance of animals.—782 pp. Univ. Chicago Press.Google Scholar
Brown, J. H. (1984). On the relationship between abundance and distribution of species.—Am. Nat. 124, 255279.CrossRefGoogle Scholar
Cullen, J. M & Browning, T. O. (1978). The influence of photoperiod and temperature on the induction of diapause in pupae of Heliothis punctigera.—J. Insect Physiol. 24, 595601.CrossRefGoogle Scholar
Daly, J. C. & Gregg, P. (1985). Genetic variation in Heliothis in Australia: species identification and gene flow in the two pest species. H. armigera (Hübner) and H. punctigera Wallengren (Lepidoptera: Noctuidae).—Bull. ent. Res. 75, 169184.CrossRefGoogle Scholar
Drake, V. A. & Farrow, R. A. (1985). A radar and aerial-trapping study of an early spring migration of moths (Lepidoptera) in inland New South Wales.—Aust. J. Ecol. 10, 223235.CrossRefGoogle Scholar
Farrow, R. A. & Daly, J. C. (1987). Long-range movements as an adaptive strategy in the genus Heliothis (Lepidoptera: Noctuidae): a review of its occurrence and detection in four pest species.—Aust. J. Zool. 35, 124.CrossRefGoogle Scholar
Farrow, R. A. & McDonald, G. (1988). Migration strategies of noctuid pests in Australia.—Insect Sci. Applic. 8, 513542.Google Scholar
Fitt, G. P. (1989). The ecology of Heliothinae in relation to agro-ecosystems.—A. Rev. Ent. 34, 1752.CrossRefGoogle Scholar
Forrester, N. W. & Cahill, M. C. (1987). Management of insecticide resistance in Heliothis armigera (Hübner) in Australia.—pp. 127137in Ford, M., Khambay, B. P., Holloman, D. W. & Sawicki, R. W. (Eds). Combating resistance in xenobiotics: biological and chemical approaches.—320 pp. Chichester, UK, Ellis Horwood.Google Scholar
Gatehouse, A. G. (1986). Migration in the African armyworm Spodoptera exempta: genetic determination of migratory capacity and a new synthesis.—pp. 128144in Danthanarayana, W. (Ed.). Insect flight: dispersal and migration.—289 pp. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Gunning, R. V., Easton, C. S., Greenup, L. R. & Edge, V. E. (1984). Pyrethroid resistance in Heliothis armiger (Hübner) (Lepidoptera: Noctuidae) in Australia.—J. econ. Ent. 77, 12831287.CrossRefGoogle Scholar
Hearn, A. B., Brook, K. D., DaRosa, G. D. & Ashburner, N. A. (1985). SIRATAC: a computer based crop management system.—pp. 7485in Gillham, F. (Ed.). Proceedings of the International Cotton Advisory Committe Crop Protection Seminar, Sydney, October 1985.—165 pp. Sydney, Int. Cott. Advis. Committee.Google Scholar
Irô, Y. & Kitching, R. L. (1986). The importance of non-linearity: a comment on the views of Taylor.—Researches Popul. Ecol. 28, 3942.Google Scholar
Ives, P. M., Wilson, L. T., Cull, P. O., Palmer, W. A., Haywood, C., Thomson, N. J., Hearn, A. B. & Wilson, A. G. L. (1984). Field use of SIRATAC: an Australian computer-based pest management system for cotton.—Prot. Ecology 6, 121.Google Scholar
Kareiva, P. (1982). Experimental and mathematical analysis of herbivore movement: quantifying the spacing and quality of foraging discrimination.—Ecol. Monogr. 52, 261282.CrossRefGoogle Scholar
Kareiva, P. (1983). Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture flied experiments.—Oecologia 57, 322327.CrossRefGoogle Scholar
Kehat, M. & Greenberg, S. (1978). Efficiency of the synthetic sex attractant and the effect of trap size on captures of Spodoptera littoralis males in water traps and in dry funnel traps.—Phytoparasitica 6, 7983.CrossRefGoogle Scholar
Rothschild, G. H. L. (1978). Attractants for Heliothis armigera and H. punctigera.—J. Aust. entomol. Soc. 17, 389390.Google Scholar
Sokal, R. R. & Oden, N. L. (1978 a). Spatial autocorrelation in biology. 1. Methodology.—J. Linn. Soc. (Biol.) 10, 199228.CrossRefGoogle Scholar
Sokal, R. R. & Oden, N. L. (1978 b). Spatial autocorrelation in biology. 2. Some biological implications and four applications of evolutionary and ecological interest.—J. Linn. Soc. (Biol.) 10, 229249.CrossRefGoogle Scholar
Stinner, R. E., Saks, M. & Dohse, L. (1986). Modeling of agricultural pest displacement.—pp. 235241in Danthanarayana, W. (Ed.). Insect flight: dispersal and migration.—289 pp. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Taylor, L. R. (1977). Migration and the spatial dynamics of an aphid, Myzus persicae.—J. Anim. Ecol. 46, 411423.CrossRefGoogle Scholar
Taylor, L. R. (1984). Assessing and interpreting the spatial distribution of insect populations.—A. Rev. Ent. 29, 321357.CrossRefGoogle Scholar
Taylor, L. R. (1986). Synoptic dynamics, migration and the Rothamsted Insect Survey.—J. Anim. Ecol. 55, 138.CrossRefGoogle Scholar
Taylor, L. R. & Taylor, R. A. J. (1977). Aggregation, migration and population mechanics.—Nature, Lond. 265, 415421.CrossRefGoogle ScholarPubMed
Taylor, L. R. & Worwood, I. P. (1980). Temporal stability as a density-dependent species characteristic.—J. Anim. Ecol. 49, 209224.CrossRefGoogle Scholar
Taylor, L. R., Worwood, I. P. & Perry, J. N. (1980). Variance and the large scale spatial stability of aphids, months and birds.—J. Anim. Ecol.. 49, 831854.CrossRefGoogle Scholar
Taylor, L. R. & Worwood, I. P. (1982). Comparative synoptic dynamics. I. Relationships between inter- and intra-specific spatial and temporal variance/mean population parameters.—J. Anim. Ecol. 51, 879906.CrossRefGoogle Scholar
Titmarsh, I. J. (1985). Population dynamics of Heliothis spp. on tobacco in far north Queensland.—286 pp. M.Sc. thesis, James Cook Univ., Townsville, Australia.Google Scholar
Wardhaugh, K. G., Room, P. M. & Greenup, L. R. (1980). The incidence of Heliothis armigera (Hübner) and H. punctigera Wallengren (Lepidoptera: Noctuidae) on cotton and other hostplants in the Namoi Valley of New South Wales.—Bull. ent. Res. 70, 113131.CrossRefGoogle Scholar
Wilson, A. G. L. (1983). Abundance and mortality of overwintering Heliothis spp.—J. Aust. entomol. Soc. 22, 191199.CrossRefGoogle Scholar
Wilson, A. G. L. (1985). Evaluation of pheromone trap design and dispensers for monitoring Heliothis punctiger and H. armiger.—pp. 7481. in Bailey, P. & Swincer, D. (Eds). Proceedings of the Fourth Australian Applied Entomological Research Conference, Adelaide 24–28 September 1984.—520 pp. South Australia, Government Printer.Google Scholar
Wilson, A. G. L., Lewis, T. & Cunningham, R. B. (1979). Overwintering and spring emergence of Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in the Namoi Valley, New South Wales.—Bull. ent. Res. 69, 97109.CrossRefGoogle Scholar
Zalucki, M. P., Daglish, G., Firempong, S. & Twine, P. (1986). The biology and ecology of Heliothis armigera (Hübner) and H. punctigera Wallengren (Lepidoptera: Noctuidae) in Australia: what do we know?.—Aust. J. Zool. 34, 779814.CrossRefGoogle Scholar