Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T18:49:00.641Z Has data issue: false hasContentIssue false

Survival and behavioural responses of the predatory ladybird beetle, Eriopis connexa populations susceptible and resistant to a pyrethroid insecticide

Published online by Cambridge University Press:  22 March 2013

A.F. Spíndola
Affiliation:
Departamento de Agronomia–Entomologia, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife – PE, 52171-900, Brazil
C.S.A. Silva-Torres*
Affiliation:
Departamento de Agronomia–Entomologia, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife – PE, 52171-900, Brazil
A.R.S. Rodrigues
Affiliation:
Departamento de Agronomia–Entomologia, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife – PE, 52171-900, Brazil
J.B. Torres
Affiliation:
Departamento de Agronomia–Entomologia, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife – PE, 52171-900, Brazil
*
*Author for correspondence Phone: +55 81 3320 6218 Fax: +55 81 3320 6205 E-mail: [email protected]

Abstract

The ladybird beetle, Eriopis connexa (Germar) (Coleoptera: Coccinellidae), is one of the commonest predators of aphids (Hemiptera: Aphididae) in the cotton agroecosystem and in many other row and fruit crops in Brazil, and has been introduced into other countries such as the USA for purposes of aphid control. In addition, the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae) is the most serious cotton pest where it occurs, including Brazil. Controlling boll weevils and other pests such as cotton defoliators still tends to involve the intense application of insecticides to secure cotton production. The pyrethroid insecticide lambda-cyhalothrin (LCT) is commonly used, but this compound is not effective against aphids; hence, a desirable strategy would be to maintain E. connexa populations in cotton fields where LCT is applied. Using populations of E. connexa resistant (Res) and susceptible (Sus) to LCT, we compared behavioural responses on treated cotton plants and under confinement on partially and fully treated surfaces, and assessed the insects' survival on treated plants compared with that of the boll weevil. The E. connexa resistant population caged on treated plants with 15 and 75 g a.i. ha−1 exhibited ≫82% survival for both insecticide concentrations compared with ≪3% and ≪17% survival for susceptible E. connexa populations and boll weevils, respectively. The response of E. connexa Res and Sus populations when released, either on the soil or on the plant canopy, indicated avoidance towards treated plants, as measured by elapsed time to assess the plant. When compared with susceptible individuals, resistant ones took longer time to suffer insecticide knockdown, had a higher recovery rate after suffering knockdown, and spent more time in the plant canopy. Based on behavioural parameters evaluated in treated arenas, no ladybird beetles exhibited repellency. However, irritability was evident, with the susceptible population exhibiting greater irritability compared with the resistant population and a subgroup comprising resistant individuals that had recovered from knockdown. The outcomes for the E. connexa Res population indicate a promising strategy for its maintenance when using the insecticide LCT in integrated pest management schemes to control boll weevil or other non-target pest of ladybird beetles in cotton fields.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.Google Scholar
Alzogaray, R.A., Fontán, A. & Zerba, E.N. (2005) Evaluation of hyperactivity produced by pyrethroid treatment on third instar nymphs of Triatoma infestans (Hemiptera: Reduviidae). Archives of Insect Biochemistry and Physiology 35, 323333.Google Scholar
Cabral, S., Garcia, P. & Soares, A.O. (2008) Effects of pirimicarb, buprofezin and pymetrozine on survival, development and reproduction of Coccinella undecimpunctata (Coleoptera: Coccinellidae). Biocontrol Science and Technology 18, 307318.Google Scholar
Campos, M.R., Picanço, M.C., Martins, J.C., Tomaz, A.C. & Guedes, R.N.C. (2011) Insecticide selectivity and behavioral response of the earwig Doru luteipes. Crop Protection 30, 15351540.Google Scholar
Chareonviriyaphap, T., Roberts, D.R., Andre, R.G., Harlan, H. & Bangs, M.J. (1997) Pesticide avoidance behaviour in Anopheles albimanus Wiedemann. Journal of the American Mosquito Control Association 13, 171183.Google Scholar
Cordeiro, E.M.G., Corrêa, A.S., Venzon, M. & Guedes, R.N.C. (2010) Insecticide survival and behavioural avoidance in the lacewings Chrysoperla externa and Ceraeochrysa cubana. Chemosphera 81, 13521357.Google Scholar
Croft, B.A. (1990) Arthropod Biological Control Agents and Pesticides. New York, John Wiley & Sons.Google Scholar
Croft, B.A. & Morse, J.G. (1979) Recent advances in natural enemy-pesticide research. Entomophaga 24, 311.Google Scholar
Deguine, J.P., Gozé, E. & Leclant, F. (2000) The consequences of late outbreaks of the aphid Aphis gossypii in cotton growing in Central Africa: towards a possible method for the prevention of cotton stickness. International Journal of Pest Management 46, 8689.Google Scholar
Ferreira, E.S., Rodrigues, A.R., Silva-Torres, C.S.A. & Torres, J.B. (2012) Life-history costs associated with resistance to lambda-cyhalothrin in the predatory ladybird beetle Eriopis connexa. Agriculture and Forest Entomology in press (http://onlinelibrary.wiley.com/doi/10.1111/j.1461-9563.2012.00599.x/abstract).Google Scholar
Georghiou, G.P. (1972) The evolution of resistance to pesticides. Annual Review of Ecology and Systematics 3, 133–68.Google Scholar
Gist, G.L. & Pless, C.D. (1985) Ovicidal activity and ovipositional repellent properties of synthetic pyrethroids to the fall armyworm Spodoptera frugiperda. Florida Entomologist 68, 462466.Google Scholar
Gould, F. (1984) Role of behaviour in the evolution of insect adaptation to insecticides and resistant host plants. Bulletin of the Entomological Society of America 30, 3441.Google Scholar
Haney, P.B., Lewis, W.J. & Lambert, W.R. (2009) Cotton Production and The Boll Weevil in Georgia: History, Cost of Control, and Benefits of Eradication. Athens, GA, College of Agricultural and Environmental Sciences, The University of Georgia. Research Bulletin 428.Google Scholar
Hardin, M.R., Benrey, B., Coll, M., Lamp, W.O., Roderick, G.K. & Barbosa, P. (1995) Arthropod pest resurgence: an overview of potential mechanisms. Crop Protection 14, 318.Google Scholar
Haynes, K.F. (1988) Sublethal effects of neurotoxic insecticides on insect behavior. Annual Review of Entomology 33, 49168.Google Scholar
Head, R., Neel, W.W., Sartor, C.R. & Chambers, H. (1977) Methyl parathion and carbaryl resistance in Chrysomela scripta and Coleomegilla maculata. Bulletin of Environmental Contamination and Toxicology 17, 163164.Google Scholar
Hoy, C.W., Head, G.P. & Hall, F.R. (1998) Spatial heterogeneity and insect adaptation to toxins. Annual Review of Entomology 43, 571594.Google Scholar
Jallow, M.F.A. & Hoy, C.W. (2005) Phenotypic variation in adult behavioral response and offspring fitness in Plutella xylostella (Lepidoptera: Plutellidae) in response to permethrin. Journal of Economic Entomology 98, 21952202.Google Scholar
Kidd, P.W. & Rummel, D.R. (1997) Effect of insect predators and a pyrethroid insecticide on cotton aphid, Aphis gossypii Glover, population density. Southwestern Entomologist 22, 381393.Google Scholar
Klowden, M.J. (2007) Physiological Systems In Insects. 2nd edn. San Diego, Academy Press.Google Scholar
Kumral, N.A., Gencer, N.S., Susurluk, H. & Yalcin, C. (2011) A comparative evaluation of the susceptibility to insecticides and detoxifying enzyme activities in Stethorus gilvifrons (Coleoptera: Coccinellidae) and Panonychus ulmi (Acarina: Tetranychidae). International Journal of Acarology 37, 255268.Google Scholar
Liu, T.X. & Stansly, P.A. (2004) Lethal and sublethal effects of two insect growth regulators on adult Delphastus catalinae (Coleoptera: Coccinellidae), a predator of whiteflies (Homoptera: Aleyrodidae). Biological Control 30, 298305.Google Scholar
Longley, M. (1999) A review of pesticide effects upon immature aphid parasitoids within mummified hosts. International Journal of Pest Management 45, 139145.Google Scholar
MAPA (2012) Ministério da Agricultura, Pecuária e Abastecimento. AGROFIT: sistema de agrotóxicos fitossanitários. Available online at http://extranet.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed on 1 March 2012).Google Scholar
Moore, R.F. (1980) Behavioral and biological effects of NRDC-161 factors in control of the boll weevil. Journal of Economic Entomology 73, 265267.Google Scholar
Obrycki, J.J., Harwood, J.D., Kring, T.J. & O'neil, R.J. (2009) Aphidophagy by Coccinellidae: application of biological control in agroecosystems. Biological Control 51, 244254.Google Scholar
Pathan, A.K., Sayyed, A.H., Aslam, M., Razaq, M., Jilani, G. & Saleem, M.A. (2008) Evidence of field-evolved resistance to organophosphates and pyrethroids in Chrysoperla carnea (Neuroptera: Chrysopidae). Journal of Economic Entomology 101, 16761684.Google Scholar
Penman, D.R. & Chapman, R.B. (1983) Fenvalerate induced distributional imbalances of two-spotted spider mite on bean plants. Entomologia Experimentalis et Applicata 33, 7178.Google Scholar
Plapp, F.W. Jr & Bull, D.L. (1978) Toxicity and selectivity of some insecticides to Chrysopa carnea, a predator of the tobacco budworm. Environmental Entomology 7, 431434.Google Scholar
Pothikasikorn, J., Overgard, H., Ketavan, C., Visetson, S., Bangs, M.J. & Chareonviriyaphap, T. (2007) Behavioral responses of malaria vectors, Anopheles harrisoni complex, to three classes of agrochemical in Thailand. Journal of Economic Entomology 44, 10321039.Google Scholar
Reed, D.K. & Pike, K.S. (1991) Summary of an exploration trip to South America. IOBC/Neartic Region Newsletter 36, 1617.Google Scholar
Richetti, A., Melo Filho, G.A., Lamas, F.M., Staut, L.A. & Fabrício, A.C. (2004) Estimativa do custo de produção de algodão, safra 2004/05, para Mato Grosso do Sul e Mato Grosso. Dourados, Embrapa Pecuária Oeste (Embrapa, Comunicado Técnico, 91).Google Scholar
Riedl, H. & Hoying, S.A. (1983) Toxicity and residual activity of fenvalerate to Typhlodromus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae), on pear. Canadian Entomologist 115, 807813.Google Scholar
Rocha, L.C.D., Carvalho, G.A., Moura, A.P., Moscardini, V.F., Rezende, D.T. & Santos, O.M. (2010) Seletividade fisiológica de inseticidas utilizados em cultura cafeeira sobre ovos e adultos de Cryptolaemus montrouzieri Mulsant. Arquivos do Instituto Biológico 77, 119127.Google Scholar
Rodrigues, A.R.S. (2012) Caracterização da resistência de joaninhas predadoras ao lambda-cialotrina. DSc. Thesis, Universidade Federal Rural de Pernambuco, Recife, Brazil.Google Scholar
Roush, R.T. & Daly, J.C. (1990) The role of population genetics in resistance research and management. pp. 97152in Roush, R.T. & Tabashink, B.E. (Eds) Pesticide Resistance in Arthropods. New York, NY, USA, Chapman and Hall.Google Scholar
Ruscoe, C.N.E. (1977) The new NRDC pyrethroids as agricultural insecticides. Pesticide Science 8, 236242.Google Scholar
SAS Institute (2001) SAS/STAT User's Guide, version 8.02, TS level 2MO. Cary, NC, SAS Institute Inc.Google Scholar
Sayyed, A.H., Pathan, A.K. & Faheem, U. (2010) Cross-resistance, genetics and stability of resistance to deltamethrin in a population of Chrysoperla carnea from Multan, Pakistan. Pesticide Biochemistry and Physiology 98, 325332.Google Scholar
Soderlund, D.M. & Bloomquist, J.R. (1989) Neurotoxic actions of pyrethroid insecticides. Annual Review of Entomology 34, 7796.Google Scholar
Tabashink, B.E. & Johnson, M.W. (1999) Evolution of Pesticide Resistance in Natural Enemies. New York, NY, USA, Academic Press.Google Scholar
Tillman, P.G. & Mulrooney, J.E. (2000) Effect of selected insecticides on the natural enemies Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae), Geocoris punctipes (Hemiptera: Lygaeidae), and Bracon mellitor, Cardiochiles nigriceps, and Cotesia marginiventris (Hymenoptera: Braconidae) in cotton. Journal of Economic Entomology 93, 16381643.Google Scholar
Torres, J.B. (2012) Insecticide resistance in natural enemies – seeking for integration of chemical and biological controls. Journal of Biofertilizers and Biopesticides 3, e104.Google Scholar
Torres, J.B., Freitas, F.S. & Pratissoli, D. (1995) Avaliação de diferentes porcentagens da mistura de farinha de milho com farinha de trigo integral e levedura-de-cerveja na criação de Anagasta kuheniella (Zeller, 1879). Revista Ciência e Prática 19, 365368.Google Scholar
Torres, J.B., Silva-Torres, C.S.A., Silva, M.R. & Ferreira, J.F. (2002) Compatibilidade de inseticidas e acaricidas com o percevejo predador Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) em algodoeiro. Neotropical Entomology 31, 311317.Google Scholar
Torres, J.B., Silva-Torres, C.S.A. & Oliveira, J.V. (2003) Toxicity of pymetrozine and thiamethoxam to Aphelinus gossypii and Delphastus pusillus. Pesquisa Agropecuária Brasileira 38, 459466.Google Scholar
Torres, J.B., Schetino, C.B. & Pratissoli, D. (2009) Controle biológico de pragas com uso de insetos predadores. Informe Agropecuário 30, 1732.Google Scholar
Wang, X., Shen, Z., Xu, W. & Lu, J. (2003) Sublethal effects of insecticides on fecundity of multicolored Asian ladybird Harmonia axyridis. Journal of Applied Ecology 14, 13451348.Google Scholar
Whalon, M.E., Mota–Sanchez, D., Hollingworth, R.M. & Duynslager, L. (2011) Arthropod Pesticide Resistance Database. Available online at http://www.pesticideresistance.org/search/1 (accessed on 25 May 2012).Google Scholar