Published online by Cambridge University Press: 10 July 2009
The effect of water currents on the dispersion of the larvae of Aedes aegypti (L.) and Anopheles stephensi List, were examined in the laboratory. The larvae represent two distinct respiratory positions, and on the basis of their amount of movement were termed active and inactive, respectively. While active larvae resist water currents, and tend to disperse evenly in a field system, inactive larvae tend to be washed away but also to accumulate in loci of minimal water movement. These findings could be applied to detection of larval populations, control by irrigation and spot chemical treatments in rice fields.