Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T18:11:47.410Z Has data issue: false hasContentIssue false

Studies of the mortality of Locusta migratoria (L.) treated with a polyhedrosis virus from the grasshopper Caledia captiva(F.) (Orthoptera: Acrididae)

Published online by Cambridge University Press:  10 July 2009

D. J. Cologan
Affiliation:
Department of Population Biology, The Australian National University, P.O. Box 475, Canberra City, ACT2601, Australia

Abstract

Preparations made from the Australian acridine grasshopper Caledia captiva (F.) that contained a recently discovered cytoplasmic polyhedrosis virus (CPV) were used to treat Locusta migratoria (L.). Feeding of the locusts with the preparations caused a significant increase in mortality. Although these deaths were associated with the viral treatment, their ultimate cause appeared to be uncontrolled proliferation of a bacterium, which is probably a strain of Enterobacter cloacae and which is usually found in locusts without ill effect. Four areas are identified where further work is necessary before the potential of the C. captiva CPV as an agent for the biological control of L. migratoria can be assessed.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brenner, D. J. (1981). The genus Enterobacter.—pp. 1173–1180 in Starr, M. P., Stolp, H., Trüpper, H. G., Balows, A. & Schlegel, H. G. (Eds.). The prokaryotes.—2284 pp. Berlin, Springer-Verlag.Google Scholar
Bucher, G. E. (1963). Nonsporulating bacterial pathogens.—pp. 117–147 in Steinhaus, E. A. (Ed.). Insect pathology. An advanced treatise. Vol. 2689 pp. New York, Academic Press.Google Scholar
Christian, P. D. & Colgan, D. J. (in press). A cytoplasmic polyhedrosis virus of the grasshopper, Caledia captiva.—Aust. J. biol. Sci.Google Scholar
Faust, R. M. (1974). Bacterial diseases.—pp. 87–183 in Cantwell, G. E. (Ed.). Insect diseases. Vol. 1.—pp. 1300. New York, Marcel Dekker.Google Scholar
Hsiung, G. D. (1982). Diagnostic virology illustrated by light and electron microscopy.—276 pp. New Haven, Yale University Press.Google Scholar
Jaeger, B. & Langridge, W. H. R. (1984). Infection of Locusta migratoria with entomopoxviruses from Arphia conspersa and Melanoplus sanguinipes grasshoppers.—J. Invertebr. Pathol. 43, 374382.CrossRefGoogle Scholar
Krieg, N. R. (1981). Introduction to systematics.—pp. 407–443 in Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R. & Phillips, G. B. (Eds.). Manual of methods for general bacteriology.—598 pp. Washington, Am. Soc. Microbiology.Google Scholar
Langridge, W. H. R. (1983). Characterization of a cytoplasmic polyhedrosis virus from Estigmene acrea (Lepidoptera).—J. Invertebr. Pathol. 42, 259263.CrossRefGoogle Scholar
Longworth, J. F. & Spilling, C. R. (1970). A cytoplasmic polyhedrosis of the larch sawfly, Anoptonyx destructor.—J. Invertebr. Pathol. 15, 276280.CrossRefGoogle Scholar
Poinar, G. O. Jr & Thomas, G. M. (1978). Diagnostic manual for the identification of insect pathogens.—218 pp. New York, Plenum Press.CrossRefGoogle Scholar
Shaw, D. D. & Wilkinson, P. (1980). Chromosome differentiation, hybrid breakdown and the maintenance of a narrow hybrid zone in Caledia.—Chromosoma 80, 131.CrossRefGoogle Scholar
Smith, K. M. (1976). Virus-insect relationships.—291 pp. London, Longman.Google Scholar
Skerman, V. B. D. (1967). A guide to the identification of the genera of bacteria.—303 pp. Baltimore, Williams & Wilkins.Google Scholar
Stolp, H. & Gadkari, D. (1981). Non-pathogenic members of the genus Pseudomonas.—pp. 719- 741 in Starr, M. P., Stolp, H., Trüpper, H. G., Balows, A. & Schlegel, H. G. (Eds.). The prokaryotes.—2284 pp. Berlin, Springer-Verlag.Google Scholar