Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T19:14:27.487Z Has data issue: false hasContentIssue false

Source of Hyalesthes obsoletus Signoret planthopper (Hemiptera: Cixiidae) in southern France and potential effects of landscape

Published online by Cambridge University Press:  11 September 2017

L. Hossard*
Affiliation:
INRA, UMR0951 Innovation, F-34060 Montpellier, France
S. Guimier
Affiliation:
INRA, UMR0951 Innovation, F-34060 Montpellier, France
F. Vinatier
Affiliation:
INRA, UMR1221 LISAH, F-34060 Montpellier, France
J.M. Barbier
Affiliation:
INRA, UMR0951 Innovation, F-34060 Montpellier, France
S. Delmotte
Affiliation:
INRA, UMR0951 Innovation, F-34060 Montpellier, France
M. Fontaine
Affiliation:
CRIEPPAM, F-04100 Manosque, France
J.B. Rivoal
Affiliation:
CRIEPPAM, F-04100 Manosque, France
*
*Author for correspondence Phone: +33 4 99 61 20 19 Fax: +33 4 67 54 58 43 E-mail: [email protected]

Abstract

Cixiid planthoppers are considered of major economic importance, as they can transmit phytoplasmas responsible for many plant diseases. While thorougly studied in vineyards, the epidemiology of stolbur phytoplasma, transmitted by Hyalesthes obsoletus Signoret, was rarely investigated on minor crops as lavender, where it leads to ‘yellow decline’ disease and large economic losses. The objective of this paper is to understand the effect of the local landscape characteristics on the presence and density of H. obsoletus in the ‘Plateau de Valensole’, southern France. Potential host plants of H. obsoletus were surveyed in three contrasted zones (in terms of crops and disease intensity), by uprooting plants and capturing adults in emergence traps. The localization and potential movements of H. obsoletus from the host plants towards lavandin (infertile hybrid of lavender) were determined using yellow sticky traps. Clary sage plants were found as major hosts of H. obsoletus. Flying insects were also caught in fields of lavandin, although emergence traps and plant uprooting did not confirm this crop as a winter host, i.e., as a reservoir for the insect. Based on one zone, we showed that attractiveness may depend on crop (clary sage or lavandin) and on its age, as well as on the distance to the supposed source field. These results suggest that clary sage could be an important host of H. obsoletus, whose density largely varies between zones. Genetic studies would be required to confirm the role of clary sage in the dissemination of yellow decline of lavandin.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksic, Z., Sutic, D. & Aleksic, D. (1967) Transmission intensity of stolbur virus by means of Hyalesthes obsoletus Sign. on some host plants. Zastita bilja 93–95, 6773.Google Scholar
ASP (Agence de Services et de Paiement) (2016) Mise à disposition du registre parcellaire graphique. Available online at http://www.asp-public.fr/ses-savoir-faire/mise-disposition-du-registre-parcellaire-graphique-anonyme (accessed July 2016).Google Scholar
Biere, A. & Tack, A.J.M. (2013) Evolutionary adaptation in three-way interactions between plants, microbes, and arthropods. Functional Ecology 27, 646660.CrossRefGoogle Scholar
Bivand, R. & Rundel, C. (2016) rgeos: Interface to Geometry Engine – Open Source (GEOS). R package version 0.3-19. Available online at https://CRAN.R-project.org/package=rgeos (accessed October 2016).Google Scholar
Boudon-Padieu, E. & Maixner, M. (2007) Potential effects of climate change on distribution and activity of insect vectors of grapevine pathogens. in Colloque international et pluridisciplinaire sous l’égide de la chaire UNESCO Vin et Culture, Dijon, vol. 23.Google Scholar
Bousset, L., Jumerl, S., Garreta, V., Picault, H. & Soubeyrand, S. (2015) Transmission of Leptosphaeria maculans from a cropping season to the following one. Annals of Applied Biology 166, 530543.CrossRefGoogle Scholar
Brcak, J. (1979) Leafhopper and planthopper vectors of disease agents in central and Southern Europe, pp. 97154. in Maramorosch, K. & Harris, K.F. (Eds) Leafhopper Vectors and Plant Disease Agents. London, Academic Press.Google Scholar
Bressan, A., Turata, A., Maixner, M., Spiazzi, S., Bondon-Padieu, E. & Girolami, V. (2007) Vector activity of Hyalesthes obsoletus living on nettles and transmitting a stolbur phytoplasma to grapevines: a case study. Annals of Applied Biology 150, 331339.CrossRefGoogle Scholar
Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach. 2nd edn. New York, Springer.Google Scholar
Chaisse, E., Foissac, X., Verdin, E., Nicole, F., Bouverat-Bernier, J.P., Jagoueix-Eveillard, S., Semetey, O., Gaudin, J., Fontaine, M., Danet, J.L., Moja, S., Conord, C., Jullien, F., Legendre, L. & Gallois, P. (2012) Amélioration des strategies de lutte contre le déperissement de la lavande et du lavandin. Innovations Agronomiques 25, 179192.Google Scholar
Chuche, J. & Thiery, D. (2014) Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: a review. Agronomy for Sustainable Development 34, 381403.Google Scholar
Chuche, J., Danet, J.L., Rivoal, J.B., Arricau-Bouvery, N., Thiery, D. (2017) Minor cultures as hosts for vectors of extensive crop diseases: does salvia sclarea act as a pathogen and vector reservoir for lavender decline? Journal of Pest Science. https://link.springer.com/content/pdf/10.1007%2Fs10340-017-0885-5.pdf Google Scholar
CIHEF (2012) Les plantes à parfum. Available online at http://www.cihef.org/filiere/plantes-parfum-lavande-lavandin (accessed October 2016).Google Scholar
Cliff, A.D. & Ord, J.K. (1981) Spatial Processes: Models and Applications. London, Pion, 262 pp.Google Scholar
Danet, J.L., Foissac, X., Zreik, L., Salar, P., Verdin, E., Nourrisseau, J.G. & Garnier, M. (2003) Candidatus Phlomobacter fragariae’ is the prevalent agent of marginal chlorosis of strawberry in French production fields and is transmitted by the planthopper Cixius wagneri (China). Bacteriology 93, 644649.Google Scholar
Danet, J.-L., Sémétey, O., Gaudin, J., Verdin, E., Chaisse, E. & Foissac, X. (2010) Lavender decline is caused by several genetic variants of the Stolbur phytoplasme in south eastern France. p. 9 in Bertaccini, A., Laviña, A. & Torres, E. (Eds) Current Status and Perspectives of Phytoplasma Disease Research and Management. COST action FA0807, Sitges, Spain.Google Scholar
Darimont, H. & Maixner, M. (2001) Actual distribution of Hyalesthes obsoletus Signoret (Auchenorrhyncha: Cixiidae) in German viticulture and its significance as a vector of Bois noir. IOBC/WPRS Bulletin 24, 199202.Google Scholar
Davis, B.N.K. (1989) The European distribution of insects on stinging nettles, Urtica dioica L.: a field survey. Italian Journal of Zoology 56, 321336.Google Scholar
Flood, J. (2010) The importance of plant health to food security. Food Security 2, 215231.CrossRefGoogle Scholar
Fos, A., Danet, J.L., Zreik, L., Gamier, M., Bove, J.M. (1992) Use of a monoclonal antibody to detect the stolbur mycoplasmalike organism in plants and insects and to identify a vector in France. Plant Disease 76, 10921096.CrossRefGoogle Scholar
Gaudin, J., Semetey, O., Foissac, X. & Eveillard, S. (2011) Phytoplasma titer in diseased lavender is not correlated to lavender tolerance to stolbur phytoplasma. Bulletin of Insectology 64, S179S180.Google Scholar
Germain, J.F., Matile-Ferrero, D., Kaydan, M.B., Malausa, T. & Williams, T.J. (2015) A new species of Dysmicoccus damaging lavender in French Provence (Hemiptera, Sternorrhyncha, Pseudococcidae). Zootaxa 3980, 575583.CrossRefGoogle ScholarPubMed
Greene, W. (2008) Functional forms for the negative binomial model for count data. Economics Letters 99, 585590.Google Scholar
Güçlü, S. & Özbek, H. (1988) Some biological studies on the biology of Hyalestes obsoletus Signoret (Homoptera: Cixidae) in the conditions of Erzurum. Turkiye-Entomoloji-Dergisi 12, 103111.Google Scholar
Hoch, H. & Remane, R. (1985) Evolution und speziation der zikaden-gattung Hyalesthes Signoret, 1865 (Homoptera Auchenorrhyncha Fulgoroidea Cixiidae). Marburber Entomology Publications 2, 1427.Google Scholar
Hossard, L., Gosme, M., Souchere, V. & Jeuffroy, M.H. (2015) Linking cropping system mosaics to disease resistanc durability. Ecological Modelling 307, 19.Google Scholar
Imo, M., Maixner, M. & Johannesen, J. (2013) Sympatric diversification vs. immigration: deciphering host-plant specialization in a polyphagous insect, the stolbur phytoplasma vector Hyalesthes obsoletus (Cixiidae). Molecular Ecology 22, 21882203.Google Scholar
Johannesen, J., Lux, B., Michel, K., Seitz, A. & Maixner, M. (2008) Invasion biology and host specificity of the grapevine yellows disease vector Hyalesthes obsoletus in Europe. Entomologia Experimentalis et Applicata 126, 271–227.CrossRefGoogle Scholar
Jovic, J., Cvrkovic, T., Mitrovic, M., Krnjajic, S., Redinbaugh, M.G., Pratt, R.C., Gingery, R.E., Hogenhout, S.A. & Tosevski, I. (2007) Roles of stolbur phytoplasma and Reptalus panzeri (Cixxinae, Auchenorrhyncha) in the epidemiology of maize redness in Serbia. European Journal of Plant Pathology 118, 8589.Google Scholar
Kessler, S., Schaerer, S., Delabays, N., Turlings, T.C.J., Trivellone, V. & Kehrli, P. (2011) Host plant preferences of Hyalesthes obsoletus, the vector of the grapevine yellows disease ‘bois noir’, in Switzerland. Entomologia Experimentalis et Applicata 139, 6067.CrossRefGoogle Scholar
Kovaceski, I.C. (1958) Stolbur a príbuzné vírusové bezsemennosti rastlín. in Proceedings of Sb. Ved. Konf, Smolenice, 1956, p. 119.Google Scholar
Langer, M. & Maixner, M. (2004) Molecular characterization of grapevine yellows associated phytoplasma of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. Vitis 43, 191199.Google Scholar
Larsen, K.J. & Whalon, M.E. (1988) Dispersal of Paraphlesius irroratus (Say) (Homoptera: Cicadellidae) in peach and cherry orchards. Environmental Entomology 17, 842851.Google Scholar
Leclant, F. & Lacote, J.P. (1969) Recherches sur les vecteurs du stolbur dans le midi de la France. Annals of Phytopathology 1, 439442.Google Scholar
Lee, I.M., Davis, R.E. & Gundersen-Rindal, E. (2000) Phytoplasma: phytopathogenic mollictutes. Annual Review of Microbiology 54, 221255.Google Scholar
Lessio, F., Tota, F. & Alma, A. (2014) Tracking the dispersion of Scaphiodeus titanus Ball (Hemiptera: Cicadeellidae) from wild to cultivated grapevine: use of a novel mark-capture technique. Bulletin of Entomological Research 104, 432443.Google Scholar
Maixner, M. (2011) Recent advances in Bois noir research. Petria 21, 95108.Google Scholar
Maixner, M. & Langer, M. (2006) Prediction of the flight of Hyalesthes obsoletus, vector of stolbur phytoplasma, using temperature sums. IOBC-WPRS Bulletin 29(11), 161166.Google Scholar
Maixner, M., Albert, A. & Johannessen, J. (2014) Survival relative to new and ancestral host plants, phytoplasma infection, and genetic constitution in races of a polyphagous insect disease vector. Ecology and Evolution 4, 30823092.CrossRefGoogle ScholarPubMed
Maniyar, B., Kehrli, P. & Johannesen, J. (2013) Population structure and incidence of the stolbur phytoplasma vector Hyalesthes obsoletus (Cixiidae among geographic regions in Switzerland. Journal of Applied Entomology 137, 589600.Google Scholar
Mori, N., Pavan, F., Bondavalli, R., Reggiani, N., Paltrinieri, S. & Bertaccini, A. (2008) Factors affecting the spread of ‘Bois Noir’ disease in northern Italy vineyards. Vitis 47, 6572.Google Scholar
Nunney, L., Yuan, X., Bromley, R., Hartung, J., Montero-Astua, M., Moreira, L., Ortiz, B. & Stouthamer, R. (2010) Population genomic analysis of bacterial plant pathogen: novel insight into the origin or Pierce's disease of grapevine in the U.S. Plos ONE 5, e15488.Google Scholar
Oerke, E.C. (2006) Crop losses to pests. Journal of Agricultural Science 144, 3143.CrossRefGoogle Scholar
Oerke, E.C. & Dehne, H.W. (2004) Safeguarding production – losses in major crops and the role of crop protection. Crop Protection 23, 275285.CrossRefGoogle Scholar
Orenstein, S., Zahavi, T., Nestel, D., Sharon, R., Markalifa, M. & Weintraub, P.G. (2003) Spatial dispersion patterns of potential leafhopper and planthopper (Homoptera) vectors of phytoplasma in wine vineyards. Annals of Applied Biology 142, 41348.Google Scholar
Panassiti, B., Hartig, F., Breuer, M. & Biedermann, R. (2015) Bayesian inference of environmental and biotic factors determining the occurrence of the grapevine disease ‘bois noir’. Ecosphere 6, 113.Google Scholar
Paradis, E., Claude, J. & Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289290.Google Scholar
QGIS Development Team (2015) QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online at http://qgis.osgeo.org (accessed January 2016).Google Scholar
Rameau, J.C., Mansion, D. & Dume, G. (1999) Flore forestière française Tome 1, Plaines et collines. Institut Pour le Développement Forestier, Paris, 1794 p.Google Scholar
Rameau, J.C., Mansion, D., Dume, G. & Gauberville, C. (2008) Flore forestière française Tome 3, Région Méditerranéenne. Institut Pour le Développement Forestier, Paris, 2432 p.Google Scholar
R Development Core Team (2013) R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing. Available online at http://www.R-project.org/ (accessed September 2016).Google Scholar
Riolo, P., Landi, L., Nardi, S. & Isodoro, N. (2007) Relationships among Hyalesthes obsoletus, its herbaceous host plants and ‘bois noir’ phytoplasma strains in vineyard ecosystems in the Marche region (central-eastern Italy). Bulletin of Insectology 60, 353354.Google Scholar
Saponari, M., Loconsole, G., Cornara, D., Yokomi, R.K., De Stradis, A., Boscia, D., Bosco, D., Martelli, G.P., Krugner, R. & Porcelli, F. (2014) Activity and transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. Journal of Economic Entomology 107(4), 13161319.Google Scholar
Self, S.G. & Liang, K.Y. (1987) Asymptotic properties of maximum likelihood estimators and likelihood ration tests under nonstandard conditions. Journal of the American Statistical Association 82, 605610.Google Scholar
Sforza, R. (1998) Epidémiologie du Bois Noir de la Vigne: Recherche d'insectes vecteurs et biologie de Hyalesthes obsoletus Sign. (Hemiptera: Cixiidae); Evolution de la maladie et perspectives de lutte. PhD Thesis, Université Paris VI, Paris.Google Scholar
Sforza, R., Clair, D., Daire, X., Larrue, J. & Boudon-Padieu, E. (1998) The role of Hyalestesthes obsoletus (Hemiptera: Cixiidae) on the occurrence of Bois noir of grapevines in France. Journal of Phytopathology 146, 549556.Google Scholar
Sforza, R., Bourgoin, T., Wilson, S.W. & Boudon-Padieu, E. (1999) Field observations, laboratory rearing and descriptions of immatures of the planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae). European Journal of Entomology 96, 409418.Google Scholar
Siebel, H.N. & Bouwma, I.M. (1998) Occurrence of herbs and woody juveniles in a hardwood floodplain forest in relation to flooding and light. Journal of Vegetation Science 9, 623630.CrossRefGoogle Scholar
Suchov, K.C. & Vovk, A.M. (1946) Cikadka Hyaleslhes obsoletus Sign., perenoschik stolbura pasiyonovykh. in Doklady Acad. Nauk SSSR., pp. 153156.Google Scholar
Venables, W.N. & Ripley, B.D. (2002) Modern Applied Statistics with S. 4th edn. New York, Springer, ISBN 0-387-95457-0.Google Scholar
Ver Hoef, J.M. & Boveng, P.L. (2007) Quasi-Poisson vs. Negative binomiale regression: how should we model overdispersed cound data? Ecology 88, 27662772.Google Scholar
Weintraub, P.B. & Beanland, L. (2006) Insect vectors of phytoplasma. Annual Review of Entomology 51, 91111.Google Scholar
Wells, J.M., Raju, B.C., Hung, H.Y., Weisburg, W.G., Mandelco-Paul, L. & Brenner, D.J. (1987). Xylella fastidiosa gen. nov., sp. nov: gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. International Journal of Systematic Bacteriology 37(2), 136143.CrossRefGoogle Scholar
Yvin, C. (2011) Déperissement: Bilan 2010 du réseau de piégeage de Hyalesthes obsoletus dans les lavanderaies. L'Essentiel 63, 15.Google Scholar
Zahavi, T., Peles, S., Harari, A.R., Soroker, V. & Sharon, R. (2007) Push and pull strategy to reduce Hyalesthes obsoletus population in vineyards by Vitex agnus castus as trap plant. Bulletin of Insectology 60, 297298.Google Scholar
Zeileis, A. & Hothorn, T. (2002) Diagnostic checking in regression relationships. R News 2, 710.Google Scholar
Supplementary material: File

Hossard et al supplementary material

Hossard et al supplementary material 1

Download Hossard et al supplementary material(File)
File 512.9 KB