Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-18T16:30:17.820Z Has data issue: false hasContentIssue false

Sex Ratios and the Status of the Male in Pseudococcinae (Hem. Coccidae)

Published online by Cambridge University Press:  10 July 2009

H. C. James
Affiliation:
Entomological Dept., Zoological Laboratory, Cambridge.

Extract

1. The male of Pseudococcus is co-equal in importance with the female for the propagation of the species. Virgin females of P. citri, Risso (both aerial and root forms), P. maritimus, Ehr., P. gahani, Green, P. longispinus, Targ., and T. peregrinus, Green, are incapable of producing offspring. No form of parthenogenesis occurs in these five species. Only fertilised eggs develop.

2. The relative abundance of the male sex varies greatly from species to species. The specific sex ratio of citri is 101·62± 1·54 ♂♂ per 100 ♀♀, estimated from 11,413 progeny from 47 females; that of maritimus is 59·65± 9·39 ♂♂ per 100 ♀♀, estimated from 4,630 progeny from 42 females; that of gahani is 43·025± 2·28 ♂♂ per 100 ♀♀ estimated from 12,092 progeny from 61 females; that of longispinus (for bisexual families only) is 19·28± 2·27 ♂♂ per 100 ♀♀, estimated from 4,084 progeny from 19 females; and that of peregrinus 37·01± 7·906 ♂♂ per 100 ♀♀, estimated from 3,946 progeny from 24 females.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1937

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Barnes, H. F. (1931).The sex ratio at the time of emergence and the occurrence of unisexual families in the Gall Midges (Cecidomyidae).—J. Genetics 24, pp. 225234.CrossRefGoogle Scholar
2Barnes, H. F. (1935).The Arabis midge (Dasyneura arabis).—J. Anim. Ecol. 4, pp. 119126, 4 pl., 1 fig.CrossRefGoogle Scholar
3Bridges, C. B. (1921). Triploid intersexes in Drosophila melanogaster.—Science 54, pp. 252254.CrossRefGoogle ScholarPubMed
4Buxton, P. A. (1937).Proc. R. Ent. Soc. Lond. (c) 2, No. 2.Google Scholar
5Coleman, L. C. & Kannan, Kunhi. (1918). Bull. 4, Dep. Agric. Mysore.Google Scholar
6Ferris, G. F. (1918).The California species of mealy bugs.—Leland Stanf. Univ. Pub. Univ. Ser. [no. 32].Google Scholar
7Doncaster, L. (1914). The Determination of Sex. Cambridge.Google Scholar
8Goldschmidt, R. (1934). Lymantria.—Bibliogr. genet. 11.Google Scholar
9Hertwig, R. (1912). Ueber den derzeitigen Stand des Sexual-problems.—Biol. Zentralb. 32.Google Scholar
10Hindle, E. (1917). Parasitology 9, 4, pp. 259–65.CrossRefGoogle Scholar
11King, H. D. (1912).J. Exp. Zool. 12.CrossRefGoogle Scholar
12King, H. D. (1919).Studies on in-breeding.—Wistar Inst. Biol. pp. 1175.Google Scholar
13Kuschakewitsch, . (1910). Die Entwicklungsgeschichte der Keimdrusen von Rana esculenta.—Festschr. R. Hertwig 2.Google Scholar
14Metz, H. (1929). Sex determination in Sciara.—Amer. Nat. 63, pp. 487496.CrossRefGoogle Scholar
15Mrsic, W. (1923). Die Spätbefruchtung und deren Einfluss auf Entwicklung und Geschlechtsbildung.—Arch. mikr. Anat. Entw. 98, pp. 129209.Google Scholar
16Myers, L. E. (1932). Two economic greenhouse mealy-bugs of Mississippi.—J. Econ. Ent. 25, pp. 891896, 2 pls.CrossRefGoogle Scholar
17Riddle, O. (1916). Sex control and known correlations in pigeons.—Amer. Nat. 50, pp. 385410.CrossRefGoogle Scholar
18Schrader, Franz. (1922). A study of the chromosomes in three species of Pseudococcus.—Arch. Zellforsch. 17, pp. 4560, 2 pls.Google Scholar
19Schrader, Franz. (1923). The sex ratio and oogenesis of Pseudococcus citri.—Z. indukt. Abstam. u. Vererb. 30, pp. 163182, 5 pls.Google Scholar