Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T18:20:08.078Z Has data issue: false hasContentIssue false

The separation of two hymenopteran parasitoids, Tersilochus obscurator and Tersilochus microgaster (Ichneumonidae), of stem-mining pests of winter oilseed rape using DNA, morphometric and ecological data

Published online by Cambridge University Press:  09 March 2007

H. Barari
Affiliation:
Plant and Invertebrate Ecology Division, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
A.W. Ferguson*
Affiliation:
Plant and Invertebrate Ecology Division, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
R.W. Piper
Affiliation:
Plant and Invertebrate Ecology Division, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
E. Smith
Affiliation:
Plant and Invertebrate Ecology Division, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
D.L.J. Quicke
Affiliation:
Division of Biology and NERC Centre for Population Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK, and Department of Entomology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
I.H. Williams
Affiliation:
Plant and Invertebrate Ecology Division, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
*
*Fax: +44 (0)1582 760981 E-mail: [email protected]

Abstract

Tersilochus obscurator Aubert and Tersilochus microgaster (Szépligeti) are larval endoparasitoids of economically-important stem-mining pests of winter oilseed rape (Brassica napus L.) in Europe. They are difficult to separate morphologically. Their hosts are Ceutorhynchus pallidactylus (Marsham) and Psylliodes chrysocephala Linnaeus, respectively. The parasitoids' taxonomic status, identification, host range and phenology were studied using genetic, morphometric and ecological data. The study used 527 female parasitoids from the UK and Germany, either field-collected in emergence traps or reared from field-collected host larvae. Two morphometric characters, the ovipositor sheath to first metasomal tergite ratio and the percentage of the mesopleuron spanned by the sternaulus, were measured. A 440 bp section of mitochondrial DNA cytochrome oxidase subunit I (COI) gene was sequenced from 35 parasitoids reared from C. pallidactylus, 20 reared from P. chrysocephala and individuals from two outgroups, Tersilochus heterocerus Thomson and Phradis interstitialis Thomson. Distinct and invariable COI sequences corresponded exclusively to each parasitoid group, confirming that T. obscurator and T. microgaster are discrete species. Measurements of host-reared and COI-sequenced specimens indicated that the ranges of both morphometric characters overlapped between species. Using these ranges as criteria, all but 3.6% of UK specimens and 2% of German specimens were identifiable to species without reference to host or phenology. There were differences in emergence phenology in the UK, adult T. microgaster emerging from winter diapause by 29 March 2000, T. obscurator emerging between 12 April and 24 May 2000. The value of molecular techniques in the identification of closely-related parasitoid species is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, D.V. (2003) Biocontrol of oilseed rape pests 355 Oxford Blackwell ScienceCrossRefGoogle Scholar
Alvarez, J.M. & Hoy, M. (2003) Molecular markers in classical biological control of the citrus leafminer: taxonomic and ecological evaluations. pp. 7589in Van Driesche, R.G. (Ed.) First International Symposium of Biological Control of Arthropods.January 14–18, 2002.USDA Forest Service Publication FHTETMorgantown, West Virginia.Google Scholar
Arbogast, B.S., Edwards, S.V., Wakeley, J., Beerli, P. & Slowinski, J. (2002) Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annual Review of Ecology and Systematics 33, 707740.CrossRefGoogle Scholar
Barari, H., Cook, S.M. & Williams, I. (2004) Rearing and identification of the larval parasitoids of Psylliodes chrysocephala and Ceutorhynchus pallidactylus from field-collected specimens. Bulletin IOBC/wprs, Integrated Control in Oilseed Crops 27, 263272.Google Scholar
Barari, H., Cook, S.M., Clark, S.J. & Williams, I. (2005) Effect of a turnip rape (Brassica rapa) trap crop on stem-mining pests and their parasitoids in winter oilseed rape (Brassica napus). BioControl 50 – In the PressCrossRefGoogle Scholar
Brown, J.M., Pellmyr, O., Thompson, J.N. & Harrison, R. (1994) Phylogeny of Greya (Lepidoptera: Prodoxidae), based on nucleotide sequence variation in mitochondrial cytochrome oxidase I and II: congruence with morphological data. Molecular Biology and Evolution 11, 128141.Google ScholarPubMed
Crozier, R.H. & Crozier, Y. (1993) The mitochondrial genome of the honey bee Apis mellifera: complete sequence and genome organization. Genetics 133, 97117.CrossRefGoogle ScholarPubMed
Dayhoff, M.O. & Eck, R. (1994) Molecular tools Molecular markers, natural history and evolution pp. 4491 in Avise, G.C. (Ed) LondonChapman and HallGoogle Scholar
Eggleton, P. & Belshaw, R. (1992) Insect parasitoids: an evolutionary overview. Philosophical Transactions of the Royal Society of London, B 337, 120.Google Scholar
Funk, D.J., Futuyma, D.J., Orti, G. & Meyer, A. (1995) Mitochondrial DNA sequences and multiple data sets: a phylogenetic study of phytophagous beetles (Chrysomelidae: Ophraella). Molecular Biology and Evolution 12, 627640.Google ScholarPubMed
Hillis, D.M. (1987) Molecular versus morphological approaches to systematics. Annual Review of Ecology and Systematics 18, 2342.CrossRefGoogle Scholar
Horstmann, K. (1971) Revesion der europäischen Tersilochinen I (Hymenoptera, Ichneumonidae). Veröffentlichungen der Zoologischen Staatssammlung München 15, 47138.Google Scholar
Horstmann, K. (1981) Revision der europäischen Tersilochinae II (Hymenoptera, Ichneumonidae). Spixiana, Supplement 4, 176.Google Scholar
Jourdheuil, P. (1960) Influence de quelques facteurs écologiques sur les fluctuations de population d'une biocénose parasitaire: étude relative à quelques Hyménoptères (Ophioninae, Diospilinae, Euphorinae) parasites de divers Coléoptères inféodés aux Crucifères. Annales des Épiphyties 11, 445658.Google Scholar
Klingenberg, A. & Ulber, B. (1994) Investigations on the occurrence of Tersilochinae (Hym, Ichneumonidae) as parasitoids of oilseed rape pests in the Göttingen region in 1990 and 1991, and on their emergence following various tillage techniques. Journal of Applied Entomology-Zeitschrift für Angewandte Entomologie 117, 287299.Google Scholar
Landry, B., Powell, J.A. & Sperling, F.A.H. (1999) Systematics of the Argyrotaenia franciscana (Lepidoptera: Tortricidae) species group: evidence from mitochondrial DNA. Annals of the Entomological Society of America 92, 4046.CrossRefGoogle Scholar
LaSalle, J. (1993) Parasitic Hymenoptera, biological control and biodiversity. pp. 197214LaSalle, J. Gauld, I.D. (Eds) Hymenoptera and biodiversity. Wallingford, Oxon, CAB International.Google Scholar
LaSalle, J. & Gauld, I. (1993) Hymenoptera: their diversity, pp. 126in LaSalle, J. Gauld, I.D. (Eds) Hymenoptera and biodiversity. Wallingford, Oxon, CAB International.Google Scholar
Mitchell, S.E., Cockburn, A.F. & Seawright, J. (1993) The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization. Genome 36, 10581073.CrossRefGoogle ScholarPubMed
Moritz, G., Dowling, T.E. & Brown, W. (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics 18, 269292.CrossRefGoogle Scholar
Nitzsche, O. (1998) Auftreten und Effizienz von Parasitoiden als natürliche Gegenspieler von Schadinsekten im Winterraps unter besonderer Berücksichtigung unterschiedliedlicher Bodenbearbeitungsmaßnahmen nach winteraps. PhD thesis, Georg-August University of Göttingen.Google Scholar
Quicke, D.L.J. (1997) Parasitic wasps 470 London Chapman and HallGoogle Scholar
Quicke, D.L.J. (2004) The world of DNA barcoding and morphology – collision or synergism and what of the future. Systematist 23, 812.Google Scholar
Randi, E. (2000) Mitochondrial DNA pp. 136167Baker, A.J. (Ed) Molecular methods in ecology. New YorkBlackwell ScienceGoogle Scholar
Roehrdanz, R.L. (1997) Identification of tobacco budworm and corn earworm (Lepidoptera: Noctuidae) during early developmental stages by polymerase chain reaction and restriction fragment length polymorphism. Annals of the Entomological Society of America 90, 329332.CrossRefGoogle Scholar
Simon, C. (1991) Molecular systematics at the species boundary: exploiting conserved and variable regions of the mitochondrial genome of animals via direct sequencing from amplified DNA. pp. 3371in Hewitt, G.M, Johnston, A.W.B, & Young, G.P.W. (Eds) Molecular techniques in taxonomy. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Sperling, F. (2003) DNA barcoding. Deus ex machina. in Opinion Page, Newsletter of the Biological Survey of Canada (Terrestrial Arthropods) 22(2), http://www.biology.ualberta.ca/bsc/news22_2/opinionpage.htm".Google Scholar
Sperling, F.A.H. & Harrison, R. (1994) Mitochondrial DNA variation within and between species of the Papilio machaon group of swallowtail butterflies. Evolution 48, 408422.CrossRefGoogle ScholarPubMed
Sperling, F.A.H. & Hickey, D. (1994) Mitochondrial DNA sequence variation in the spruce budworm species complex (Choristoneura: Lepidoptera). Molecular Biology and Evolution 11, 656665.Google ScholarPubMed
Sunnucks, P. & Hales, D. (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13, 510524.CrossRefGoogle ScholarPubMed
Ulber, B. (2003) Parasitoids of ceutorhynchid stem weevils. 8795in Alford, D.V. (Ed.) Biocontrol of oilseed rape pests. Oxford, Blackwell Science.CrossRefGoogle Scholar
Ulber, B. & Williams, I. (2003) Parasitoids of flea beetles. 125138Alford, D.V. (Ed.) Biocontrol of oilseed rape pests. Oxford, Blackwell Science.CrossRefGoogle Scholar
Unruh, T.R., White, W., Gonzalez, D. & Woolley, J. (1989) Genetic relationships among seventeen Aphidius (Hymenoptera: Aphidiidae) populations, including six species. Annals of the Entomological Society of America 82, 754762.CrossRefGoogle Scholar
Vidal, S. (2003) Identification of hymenopterous parasitoids associated with oilseed rape pests. 161179Alford, D.V. (Ed.) Biocontrol of oilseed rape pests. Oxford, Blackwell Science.CrossRefGoogle Scholar
Will, K.W. & Rubinoff, D. (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20, 4755.CrossRefGoogle ScholarPubMed
Xiong, B. & Kocher, T. (1991) Comparison of mitochondrial DNA sequences of seven morphospecies of blackflies (Diptera: Simuliidae). Genome 34, 306311.CrossRefGoogle ScholarPubMed