Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T13:59:36.904Z Has data issue: false hasContentIssue false

Quantification of the effect of host patch configuration on the abundance of Bemisia tabaci in central Argentina: a multimodel inference approach

Published online by Cambridge University Press:  28 July 2022

Mariano P. Grilli*
Affiliation:
Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (CREAN-IMBIV), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina Cátedra de Bioestadística I y II, FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
Marina Bruno
Affiliation:
Cátedra de Microbiología, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
Romina Fachinetti
Affiliation:
Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (CREAN-IMBIV), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
*
Author for correspondence: Mariano P. Grilli, Email: [email protected]

Abstract

Bemisia tabaci is a complex of species, which is considered the most common and important pest of a wide range of crops belonging to many different botanical families. In Argentina, this species is recognized as a vector of geminiviruses, and Middle East-Asia Minor 1, Mediterranean, New World and New World 2 have been found to coexist in the same area. Landscape elements, like habitat patch area and isolation, define the habitat configuration and have a direct effect on insect populations between and within host patches. In this paper, we analyse the effect of potato patch configuration on the distribution and abundance of B. tabaci. Potato patches were identified using Landsat TM5 and TM7 images, and a supervised classification was performed to quantify the spatial distribution of the patches in the whole study area. Potato patch metrics were estimated using Fragstats 4.4. Generalized linear mixed models were employed to analyse the relationship between whiteflies and landscape configuration, through a multimodel inference approach, finding that B. tabaci abundance and landscape metrics were very variable. After a multimodel selection process, we found that perimeter-to-area ratio and Euclidean distance between patches were the variables that best explained whitefly abundance in potato patches. Implications of these findings are discussed.

Type
Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alemandri, V, De Barro, PJ, Bejerman, N, Arguello-Caro, EB, Dumon, AD, Mattio, MF, Rodriguez, SM and Truol, G (2012) Species within the Bemisia tabaci (Hemiptera: Aleyrodidae) complex in soybean and bean crops in Argentina. Journal of Economic Entomology 105, 4853.CrossRefGoogle ScholarPubMed
Alemandri, V, Martino, JA, Di Feo, L and Truol, G (2014) Indigenous and introduced species of the Bemisia tabaci complex in sweet potato crops from Argentina. Agriscientia 31, 103107.CrossRefGoogle Scholar
Alemandri, V, Vaghi, MCG, Dumón, AD, Argüello, CEB, Mattio, MF, García, MS, López, LPM and Truol, G (2015) Three members of the Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex occur sympatrically in Argentine horticultural crops. Journal of Economical Entomology 108, 405413.CrossRefGoogle ScholarPubMed
Anderson, DR, Burnham, KP and Thompson, WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management 64, 912923.CrossRefGoogle Scholar
Andersson, P, Löfstedt, C and Hambäck, PA (2013) Insect density–plant density relationships: a modified view of insect responses to resource concentrations. Oecologia 173, 13331344.CrossRefGoogle ScholarPubMed
Bach, CE (1988) Effects of host plant patch size on herbivore density: underlying mechanisms. Ecology 69, 11031117.CrossRefGoogle Scholar
Bender, DJ, Tischendorf, L and Fahrig, L (2003) Using patch isolation metrics to predict animal movement in binary landscapes. Landscape Ecology 18, 1739.CrossRefGoogle Scholar
Blackmer, JL, Byrne, DN and Tu, Z (1994) Behavioral, morphological, and physiological traits associated with migratory Bemisia tabaci (Homoptera. Aleyrodidae). Journal of Insect Behavior 8, 251267.CrossRefGoogle Scholar
Bowers, MA and Matter, SF (1997) Landscape ecology of mammals: relationships between density and patch-size. Journal of Mammalogy 78, 9991013.CrossRefGoogle Scholar
Brown, JK, Frohlich, DR and Rosell, RC (1995) The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology 40, 511534.CrossRefGoogle Scholar
Bukovinszky, T, Potting, RPJ, Clough, Y, van Lenteren, JC and Vet, LEM (2005) The role of pre- and post-alighting detection mechanisms in the responses to patch size by specialist herbivores. Oikos 109, 435446.CrossRefGoogle Scholar
Burnham, KP and Anderson, DR (1998) Model Selection and Multimodel Inference. Berlin: Springer.CrossRefGoogle Scholar
Burnham, KP and Anderson, DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd Edn. Berlin: Springer.Google Scholar
Byrne, DN (1999) Migration and dispersal by the sweet potato whitefly, Bemisia tabaci. Agricultural and Forest Meteorology 97, 309316.CrossRefGoogle Scholar
Byrne, DN and Bellows, TR (1991) Whitefly biology. Annual Review of Entomology 36, 431475.CrossRefGoogle Scholar
Byrne, DN, Rathman, RJ, Orum, TV and Palumbo, JC (1996) Localized migration and dispersal by the sweet potato whitefly, Bemisia tabaci. Oecologia 105, 320328.CrossRefGoogle ScholarPubMed
Caballero, R (1996) Identificación de moscas blancas. In Hilje, L (ed.), Metodología para el estudio y manejo de moscas blancas y geminivirus. Turrialba, Cartago, Costa Rica: CATIE, pp. 110.Google Scholar
Cahill, M, Denholm, I, Ross, G, Gorman, K and Johnston, D (1996) Relationship between bioassay data and the simulated field performance of insecticides against susceptible and resistant adult Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research 86, 109116.CrossRefGoogle Scholar
Congalton, RG and Green, K (2019) Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition. Boca Raton, FL, USA: CRC Press.CrossRefGoogle Scholar
Connor, EF, Courtney, AC and Yoder, JM (2000) Individuals–area relationships: the relationship between animal population density and area. Ecology 81, 734748.Google Scholar
De Barro, PJ, Liu, SS, Boykin, LM and Dinsdale, AB (2011) Bemisia tabaci: a statement of species status. Annual Review of Entomology 56, 119.CrossRefGoogle ScholarPubMed
Döring, TF (2014) How aphids find their host plants, and how they don't. Annals of Applied Biology 165, 326.CrossRefGoogle Scholar
Eastman, R (2020) TerrSet 2020 – Geospatial Monitoring and Modeling System Manual. Worcester, MA: Clark Laboratories, Clark University, 391 p.Google Scholar
Ewers, RM and Didham, R (2006) Continuous response functions for quantifying the strength of edge effects. Journal of Applied Ecology 43, 527536.CrossRefGoogle Scholar
Fahrig, L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. Journal of Biogeography 40, 1649–163.CrossRefGoogle Scholar
Fahrig, L, Girard, J, Duro, D, Pasher, J, Smith, A, Javorek, S, King, D, Freemark Lidsay, K, Mitchel, S and Tischendorf, L (2015) Farmlands with smaller crop fields have higher within-field biodiversity. Agriculture Ecosystem and Environment 200, 219234.CrossRefGoogle Scholar
Forman, RTT (1995) Land Mosaics: The Ecology of Landscapes and Regions. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Fox, J (2003) Effect displays in R for generalised linear models. Journal of Statistical Software 8, 127. Available at http://www.jstatsoft.org/v08/i15/.CrossRefGoogle Scholar
Fox, J and Hong, J (2009) Effect displays in R for Multinomial and Proportional-Odds Logit Models: Extensions to the effects Package. Journal of Statistical Software 32, 124.CrossRefGoogle Scholar
Grille, G, Gauthier, N, Buenahora, J, Basso, C and Bonato, O (2011) First report of the Q biotype of Bemisia tabaci in Argentina and Uruguay. Phytoparasitica 39, 235238.CrossRefGoogle Scholar
Grilli, MP and Bruno, MA (2007) Regional abundance of a planthopper pest: the effect of host patch area and configuration. Entomologia Experimentalies et Applicatta 122, 133143.CrossRefGoogle Scholar
Grilli, MP and Fachinetti, R (2017) The role of sex and mating status in the expansion process of Arhopalus rusticus (Coleoptera: Cerambycidae) – an exotic cerambycid in Argentina. Environmental Entomology 46, 714721.CrossRefGoogle ScholarPubMed
Grilli, MP and Fachinetti, R (2019) Can forest pattern affect the distribution and abundance of Arhopalus rusticus (Coleoptera: Cerambycidae)? A landscape perspective in central Argentina. International Journal of Pest Management 65, 268275.CrossRefGoogle Scholar
Grueber, CE, Nakagawa, S, Laws, RJ and Jamieson, IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24, 699711.CrossRefGoogle ScholarPubMed
Haddad, NM, Brudvig, LA, Clobert, J, Davies, KF, Gonzalez, A, Holt, RD, Lovejoy, TE, Sexton, JO, Austin, MP, Collins, CD, Cook, WM, Damschen, EI, Ewers, RM, Foster, BL, Jenkins, CN, King, AJ, Laurance, WF, Levey, DJ, Margules, CR, Melbourne, BA, Nicholls, AO, Orrock, JL, Song, DX and Townshend, JR (2015) Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances 1, e1500052.CrossRefGoogle ScholarPubMed
Hambäck, PA and Englund, G (2005) Patch area, population density and the scaling of migration rates: the resource concentration hypothesis revisited. Ecology Letters 8, 10571065.CrossRefGoogle Scholar
Helzer, CJ and Jelinski, DE (1999) The relative importance of patch area and perimeter-area ratio to grassland breeding birds. Ecological Applications 9, 14481458.Google Scholar
Hogenhout, SA, Ammar, ED, Whitfield, AE and Redinbaugh, MG (2008) Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology 46, 327359.CrossRefGoogle ScholarPubMed
Huarte, M and Capezio, S (2013) Cultivo de Papa. Unidad Integrada Balcarce INTA FCA UNMdP.CA. Available at https://inta.gob.ar/sites/default/files/script-tmp-inta-huarte_capezio_papa2013.pdf.Google Scholar
Kanakala, S and Ghanim, M (2015) Advances in the genomics of the whitefly Bemisia tabaci: an insect pest and a virus vector. In Short Views on Insect Genomics and Proteomics, vol. 4. Cham, Switzerland: Springer International Publishing Switzerland, pp. 1940. ISBN 978-3-319-24242-2.CrossRefGoogle Scholar
Krause-Sakate, R, Watanabe, LFM, Gorayeb, ES, da Silva, FB, Alvarez, D, Bello, VH, Nogueira, AM, de Marchi, BR, Vicentin, E, Ribeiro-Junior, MR, Marubayashi, J, Rojas-Bertini, CA, Muller, C, Oliveira de Freitas Bueno, RC, Rosales, M, Ghanim, M and Agenor Pavan, M (2020) Population dynamics of whiteflies and associated viruses in South America: research progress and perspectives. Insects 11, 847.CrossRefGoogle Scholar
Landgrebe, DA (2003) Signal Theory Methods in Multispectral Remote Sensing. Hoboken, NY: Wiley, p. 528.CrossRefGoogle Scholar
Liu, SS, De Barro, PJ, Xu, J, Luan, JB, Zang, LS, Ruan, YM and Wan, FH (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science (New York, N.Y.) 318, 17691772.CrossRefGoogle Scholar
Ludwig, M, Schlinkert, H and Meyhofer, R (2018) Wind-modulated landscape effects on colonization of Brussels sprouts by insect pests and their syrphid antagonists. Agricultural and Forest Entomology 20, 141149.CrossRefGoogle Scholar
Macfadyen, S, Paull, C, Boykin, LM, De Barro, P, Maruthi, MN, Otim, M, Kalyebi, A, Vassão, DG, Sseruwagi, P, Tay, WT, Delatte, H, Seguni, Z, Colvin, J and Omongo, CA (2018) Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in East African farming landscapes: a review of the factors determining abundance. Bulletin of Entomological Research 20, 118.Google Scholar
Martin, CA (2018) An early synthesis of the habitat amount hypothesis. Landscape Ecology 33, 18311835.CrossRefGoogle Scholar
Mcgarigal, K and Ene, E (2015) Fragstats 4.2. A spatial pattern analysis program for categorical maps.Google Scholar
Navas-Castillo, J, Fiallo-Olive´, E and Sanchez-Campos, S (2011) Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology 49, 219248.CrossRefGoogle ScholarPubMed
Noldus, LPJJ, Rumei, X and van Lenteren, JC (1986) The parasite–host relationship between Encarsia formosa Gahan (Hymenoptera, Aphelinidae) and Trialeurodes vaporariorum (Westwood) (Homoptera, Aleyrodidae). XIX. Feeding-site selection by the greenhouse whitefly. Journal of Applied Entomology 101, 492507.CrossRefGoogle Scholar
Oliveira, MRV, Henneberry, TJ and Anderson, P (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection 20, 709723.CrossRefGoogle Scholar
Perring, TM (2001) The Bemisia tabaci species complex. Crop Protection 20, 725737.CrossRefGoogle Scholar
Perring, TM and Symmes, EJ (2006) Courtship behavior of Bemisia argentifolii (Hemiptera: Aleyrodidae) and whitefly mate recognition. Annals of the Entomological Society of America 99, 598606.CrossRefGoogle Scholar
Ploper, LD, Laguna, IG, Truol, G and Rodríguez Pardina, P (1989) Infección doble con virus del mosaico de la soja (SMV) y un virus de partículas isométricas en cultivos de soja en la Provincia de Salta, Argentina. In Pascale, AJ (ed.), Proceedings World Soybean Research Conference IV. Buenos Aires, Argentina: Editora S.R.L, pp. 21052111.Google Scholar
Quattrini, MM (2005) Cultivo de papa, en Olericultura, tomo II. Córdoba: Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, pp. 102119.Google Scholar
R Core Team (2019) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at http://www.R-project.org/.Google Scholar
Root, RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs 43, 95124.CrossRefGoogle Scholar
Sánchez, C and Barberis, NA (2013) Caracterización del territorio Centro de la provincia de Córdoba. Córdoba, Argentina: Ediciones INTA. Estación Experimental Agropecuaria Manfredi.Google Scholar
Saura, S (2021) The habitat amount hypothesis implies negative effects of habitat fragmentation on species richness. Journal of Biogeography 48, 1122.CrossRefGoogle Scholar
Stamps, JA, Buechner, M and Krishnan, V (1987) The effects of edge permeability and habitat geometry on emigration from patches of habitat. American Naturalist 129, 533552.CrossRefGoogle Scholar
Steffan-Dewenter, I and Tscharntke, T (2000) Butterfly community structure in fragmented habitats. Ecology Letters 3, 449456.CrossRefGoogle Scholar
Thies, C, Steffan-Dewenter, I and Tscharntke, T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101, 1825.CrossRefGoogle Scholar
Turchin, P (1998) Quantitative Analysis of Movement. Sunderland, MA, USA: Sinauer Associates.Google Scholar
Viscarret, MM, Torres-Jerez, II, Agostini de Manero, E, Lopez, SN, Botto, EE and Brown, JK (2003) Mitochondrial DNA evidence for a distinct New World group of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) indigenous to Argentina and Bolivia, and presence of the Old World B Biotype Argentina. Annals of the Entomological Society of America 96, 6572.CrossRefGoogle Scholar