Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T18:39:16.809Z Has data issue: false hasContentIssue false

Preinfestations of tomato plants by whiteflies (Bemisia tabaci) or aphids (Macrosiphum euphorbiae) induce variable resistance or susceptibility responses

Published online by Cambridge University Press:  24 October 2008

G. Nombela
Affiliation:
Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
E. Garzo
Affiliation:
Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
M. Duque
Affiliation:
Instituto de Biología y Genética Molecular, CSIC, Valladolid 47003, Spain
M. Muñiz*
Affiliation:
Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
*
*Author for correspondence Fax: +1(34) 915640800 E-mail: [email protected]

Abstract

In addition to constitutive plant resistance against pests or pathogens, plants can activate protective mechanisms upon contact with an invader or a chemical elicitor. Studies on induced plant resistance to herbivores, especially piercing-sucking insects, are less abundant than those devoted to pathogens. Several experiments under controlled conditions have been conducted to demonstrate that infestations by Macrosiphum euphorbiae induce plant resistance to Bemisia tabaci in susceptible tomato plants. After three days of exposure to 20 apterous adult aphids, the plants acquired a transiently induced resistance to B. tabaci when aphid removal occurred one or 18 hours prior to B. tabaci infestation; the effect disappeared when four days passed between aphid and whitefly infestations. The resistance observed was both locally and systemically induced. Other assays were performed to evaluate the effect of preinfestation with ten adults of B. tabaci during 48 h on the tomato responses to two different clones (Sp and Nt) of M. euphorbiae. The numbers of nymph and adult aphids were counted after the same time interval as the pre-reproductive period and 20 (Sp clone) or 22 (Nt clone) days after adult aphid removal. The tomato responses induced by whitefly feeding depend on the aphid clone. For the Sp clone, the number of aphid nymphs ten days after adult removal was significantly higher on whitefly preinfested plants than on uninfested plants. However, no significant differences were observed when the aphid clone Nt was tested. The duration of plant response to a previous infestation by B. tabaci is apparently limited.

Type
Research Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A. (2005) Future directions in the study of induced plant responses to herbivory. Entomologia Experimentalis et Applicata 115, 97105.CrossRefGoogle Scholar
Agrawal, A., Tuzun, S. & Bent, E. (1999) Induced Plant Defenses against Pathogens and Herbivores. 390 pp. St. Paul, Minnesota, APS Press.Google Scholar
Agrawal, A., Karban, R. & Colfer, R.G. (2000) How leaf domatia and induced plant resistance affect herbivores, natural enemies and plant performance. Oikos 89, 7080.CrossRefGoogle Scholar
Bostock, R.M., Karban, R., Thaler, J.S., Weyman, P.D. & Gilchrist, D. (2001) Signal interactions in induced resistance to pathogens and insect herbivores. European Journal of Plant Pathology 107, 103111.CrossRefGoogle Scholar
Cooper, W.C., Jia, L. & Goggin, F.L. (2004) Acquired and R-gene-mediated resistance against the potato aphid in tomato. Journal of Chemical Ecology 30, 25272542.CrossRefGoogle ScholarPubMed
Correa, R.S.B., Moraes, J.C., Auad, A.M. & Carvalho, G.A. (2005) Silicon and acibenzolar-S-methyl as resistance inducers in cucumber, against the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B. Neotropical Entomology 34, 429433.CrossRefGoogle Scholar
Costa, H.S., Westcot, D.M., Ullman, D.E., Rosell, R., Brown, J.K. & Johnson, M.W. (1995) Morphological variation in Bemisia endosymbionts. Protoplasma 189, 194202.CrossRefGoogle Scholar
De Barro, P.J., Sherratt, T.N., David, O. & Maclean, N. (1995) An investigation of the differential performance of clone of the aphid Sitobion avenae on two host species. Oecologia 104, 379385.CrossRefGoogle ScholarPubMed
Douglas, A.E. (1998) Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology 43, 1737.CrossRefGoogle ScholarPubMed
Dugravot, S., Brunissen, L., Létocart, E., Tjallingii, W.F., Vicent, C., Giordanengo, P. & Cherqui, A. (2007) Local and systemic responses induced by aphids in Solanum tuberosum plants. Entomologia Experimentalis et Applicata 123, 271277.CrossRefGoogle Scholar
Engelberth, J., Alborn, H.T., Schmelz, E.A. & Tumlinson, J.H. (2004) Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences USA 101, 17811785.CrossRefGoogle ScholarPubMed
Fereres, A., Lister, R.M., Araya, J.E. & Foster, J.E. (1989) Development and reproduction of the English grain aphid (Homoptera: Aphididae) on wheat cultivars infected with Barley Yellow Dwarf Virus. Environmental Entomology 18, 388393.CrossRefGoogle Scholar
Goggin, F.L., Williamson, V.M. & Ullman, D.E. (2001) Variability in the response of Macrosiphum euphorbiae and Myzus persicae (Hemiptera: Aphididae) to the tomato resistance gene Mi. Environmental Entomology 30, 101106.CrossRefGoogle Scholar
Goundoudaki, S., Tsitsipis, J.A., Margaritopoulos, J.T., Zarpas, K.D. & Divanidis, S. (2003) Performance of the tobacco aphid Myzus persicae (Hemiptera: Aphididae) on Oriental and Virginia tobacco varieties. Agricultural and Forest Entomology 5, 285291.CrossRefGoogle Scholar
Hammerschmidt, R., Métraux, J.P. & van Loon, L.C. (2001) Inducing resistance: a summary of papers presented at the First International Symposium on Induced Resistance to Plant Diseases, Corfu, May 2000. European Journal of Plant Pathology 107, 16.CrossRefGoogle Scholar
Heil, M. & Kost, C. (2006) Priming of indirect defences. Ecological Letters 9, 813817.CrossRefGoogle ScholarPubMed
Hunter, M.D. (2000) Mixed signals and cross-talk: interactions between plants, insect herbivores and plant pathogens. Agricultural and Forest Entomology 2, 155160.CrossRefGoogle Scholar
Hunter, M.D. (2002) A breath of fresh-air: beyond laboratory studies of plant volatile-natural enemy interactions. Agricultural and Forest Entomology 4, 8186.CrossRefGoogle Scholar
Inbar, M., Doostdar, H., Leibee, G.L. & Mayer, R.T. (1999) The role of plant rapidly induced responses in asymmetric interspecific interactions among insect herbivores. Journal of Chemical Ecology 25, 19611979.CrossRefGoogle Scholar
Jiang, Y.X., Nombela, G. & Muñiz, M. (2001) Analysis by DC-EPG of the resistance to Bemisia tabaci on an Mi-tomato line. Entomologia Experimentalis et Applicatta 99, 295302.CrossRefGoogle Scholar
Karban, R. & Baldwin, I.T. (1997) Induced Responses to Herbivory. 319 pp. University of Chicago Press, Chicago, IL, USA.CrossRefGoogle Scholar
Karban, R., Agrawal, A.A., Thaler, J.S. & Adler, L.S. (1999) Induced plant responses and information content about risk of herbivory. Tree 14, 443447.Google ScholarPubMed
Kfoury, L. & Masonie, G. (1995) Characteristics of the resistance of the peach cultivar Rubira to Myzus persicae Sulzer. Agronomie 15, 277284.CrossRefGoogle Scholar
Kunz, W., Schurter, R. & Maetzke, T. (1997) The chemistry of benzothiadiazole plant activators. Pesticide Science 50, 275282.3.0.CO;2-7>CrossRefGoogle Scholar
Martínez de Ilarduya, O., Xie, Q. & Kaloshian, I. (2003) Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Molecular Plant Microbe Interactions 16, 699708.CrossRefGoogle ScholarPubMed
Mayer, R.T., Inbar, M., Mckenzie, C.L., Shatters, R., Borowicz, V., Albrecht, U., Powell, C.A. & Doostdar, H. (2002) Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and pathogens. Archives of Insect Biochemistry and Physiology 51, 151169.CrossRefGoogle Scholar
Messina, F.J., Taylor, R. & Karren, M.E. (2002) Divergent responses of two cereal aphids to previous infestation of their host plant. Entomologia Experimentalis et Applicata 16, 4350.CrossRefGoogle Scholar
Muñiz, M. & Nombela, G. (2001) Bemisia tabaci: A new clip-cage for biological studies. European Whitefly Studies Network A2, 12.Google Scholar
Murugan, M. & Dhandapani, N. (2006) Induced systemic resistance activates defense responses to interspecific insect infestations on tomato. Journal of Vegetable Science 12, 4362.CrossRefGoogle Scholar
Nombela, G., Williamson, V.M. & Muñiz, M. (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Molecular Plant-Microbe Interactions 16, 645649.CrossRefGoogle ScholarPubMed
Nombela, G., Pascual, S., Aviles, M., Guillard, E. & Muñiz, M. (2005) Benzothiadiazole (BTH) induces local resistance to Bemisia tabaci in tomato plants. Journal of Economic Entomology 98, 22662271.CrossRefGoogle ScholarPubMed
Oostendorp, M., Kunz, W., Dietrich, B. & Staub, T. (2001) Induced resistance in plants by chemicals. European Journal of Plant Pathology 107, 1928.CrossRefGoogle Scholar
Prado, E. & Tjallingii, W.F. (1997) Effects of previous plant infestation on sieve element acceptance by two aphids. Entomologia Experimentalis et Applicatta 82, 189200.CrossRefGoogle Scholar
Quiroz, A., Petterson, J., Pickett, J.A., Wadhams, L.J. & Niemeyer, H.M. (1997) Semiochemicals mediating spacing behavior of bird cherry-oat aphid, Rhopalosiphum padi feeding on cereals. Journal of Chemical Ecology 23, 25992607.CrossRefGoogle Scholar
Rabbinge, R., Drees, E.M., van Der Graaf, M., Verberne, F.C.M. & Wesselo, A. (1981) Damage effects of cereal aphids in wheat. Netherland Journal of Plant Pathology 87, 217232.CrossRefGoogle Scholar
Roberts, P.A. & Thomason, I.J. (1986) Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes. Plant Disease 70, 547551.CrossRefGoogle Scholar
Rodríguez-Saona, C., Crafts-Brandner, S.J. & Cañas, L.A. (2003) Volatile emissions triggered by multiple herbivore damage: beet armyworm and whitefly feeding on cotton plants. Journal of Chemical Ecology 29, 25392550.CrossRefGoogle ScholarPubMed
Rossi, M., Goggin, F.L., Milligan, S.B., Kaloshian, I., Ullman, D.E. & Williamson, V.M. (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Sciences of the United States of America 95, 97509754.CrossRefGoogle ScholarPubMed
Sauge, M.H., Lacroze, J.P., Poëssel, J.L., Pascal, T. & Kervella, J. (2002) Induced resistance by Myzus persicae in the peach cultivar ‘Rubira’. Entomologia Experimentalis et Applicata 102, 2937.CrossRefGoogle Scholar
Siddiqui, I.A. & Shaukat, S.S. (2004) Systemic resistance in tomato induced by biocontrol bacteria against the root-knot nematode, Meloidogyne javanica is independent of salicylic acid production. Journal of Phytopathology 152, 4854.CrossRefGoogle Scholar
Smith, C.M. & Boyko, E.V. (2006) The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomologia Experimentalis et Applicata 122, 116.CrossRefGoogle Scholar
Smith-Becker, J., Keen, N.T. & Becker, J.O. (2003) Acibenzolar-S-metyl induces resistance to Colletotrichum lagenarium and cucumber mosaic virus in cantaloupe. Crop Protection 22, 769774.CrossRefGoogle Scholar
Statgraphics (1997) Statgraphics Plus for Windows 3.1. Statistical Graphics Corp.Google Scholar
Stout, M.J., Workman, K.V., Bostock, R.M. & Duffey, S.S. (1998) Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 113, 7481.CrossRefGoogle Scholar
Thaler, J.S., Stout, M.J., Karban, R. & Duffey, S.S. (2001) Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecological Entomology 26, 312324.CrossRefGoogle Scholar
Thompson, G.A. & Goggin, F.L. (2006) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. Journal of Experimental Botany 57, 755766.CrossRefGoogle ScholarPubMed
Tjallingii, W.F. (1988) Electrical recording of stylet penetration activities. pp. 95108in Minks, A.K. & Harrewijn, P. (Eds) Aphids, Their Biology, Natural Enemies and Control, Vol. 2B. Amsterdam, Elsevier.Google Scholar
Walling, L. (2000) The myriad plant responses to herbivores. Journal of Plant Growth Regulation 19, 195216.CrossRefGoogle ScholarPubMed
Wool, D. & Hales, D.F. (1996) Previous infestation affects recolonization of cotton by Aphis gossypii: induced resistance or plant damage? Phytoparasitica 24, 3948.CrossRefGoogle Scholar
Zhu-Salzman, K., Bi, J.L. & Liu, T.X. (2005) Molecular strategies of plant defense and insect counter-defense. Insect Science 12, 315.CrossRefGoogle Scholar