Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T17:14:23.445Z Has data issue: false hasContentIssue false

Predation by Engytatus varians (Distant) (Hemiptera: Miridae) on Bactericera cockerelli (Sulcer) (Hemiptera: Triozidae) and two Spodoptera species

Published online by Cambridge University Press:  09 September 2019

S. Pineda
Affiliation:
Instituto de Investigaciones Agropecuarias y Forestales. Universidad Michoacana de San Nicolás de Hidalgo. km. 9.5 Carretera Morelia-Zinapécuaro. 58880Tarímbaro, Michoacán, Mexico
O. Hernández-Quintero
Affiliation:
Instituto de Investigaciones Agropecuarias y Forestales. Universidad Michoacana de San Nicolás de Hidalgo. km. 9.5 Carretera Morelia-Zinapécuaro. 58880Tarímbaro, Michoacán, Mexico
Y. B. Velázquez-Rodríguez
Affiliation:
Instituto de Investigaciones Agropecuarias y Forestales. Universidad Michoacana de San Nicolás de Hidalgo. km. 9.5 Carretera Morelia-Zinapécuaro. 58880Tarímbaro, Michoacán, Mexico
E. Viñuela
Affiliation:
Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
J. I. Figueroa
Affiliation:
Instituto de Investigaciones Agropecuarias y Forestales. Universidad Michoacana de San Nicolás de Hidalgo. km. 9.5 Carretera Morelia-Zinapécuaro. 58880Tarímbaro, Michoacán, Mexico
S. I. Morales
Affiliation:
Instituto de Investigaciones Agropecuarias y Forestales. Universidad Michoacana de San Nicolás de Hidalgo. km. 9.5 Carretera Morelia-Zinapécuaro. 58880Tarímbaro, Michoacán, Mexico
A. M. Martínez-Castillo*
Affiliation:
Instituto de Investigaciones Agropecuarias y Forestales. Universidad Michoacana de San Nicolás de Hidalgo. km. 9.5 Carretera Morelia-Zinapécuaro. 58880Tarímbaro, Michoacán, Mexico
*
Author for correspondence: A. M. Martínez-Castillo, Email: [email protected]

Abstract

Predation by Engytatus varians (Distant) adults on different development stages of the prey species Bactericera cockerelli (Sulcer) (egg, second, and third nymphal instars), Spodoptera exigua (Hübner) and Spodoptera frugiperda (J. E. Smith) (egg, first, and second larval instars) was evaluated using tomato (Solanum lycopersicum L.) leaflets or plants. These insects are the primary pest of several agriculturally important crops. The influence of E. varians age on the predation capacity was also analysed. Engytatus varians females consumed significantly more B. cockerelli eggs and nymphs than males. Additionally, female predators consumed significantly more second than third instar prey at two predator ages, while males consumed significantly more the second instar than third instar prey at all predator ages. In most of the cases, females also consumed significantly more S. exigua and S. frugiperda eggs than males; however, in terms of larvae consumption, this difference was observed only in some predator ages. Females consumed more the first than second instar S. exigua than males, whereas this behaviour was only observed in males when the predators were 15 and 17 days old. No significant differences were observed in the consumption of first and second instar of S. frugiperda for both sexes of the predators. Predator age did not cause any systematic effects on the predation rates of any prey species. Based on these results, we confirmed that E. varians has potential as a biological control agent for B. cockerelli and also for the Spodoptera species bioassayed.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alomar, O, Riudavets, J and Castañe, C (2006) Macrolophus caliginosus in the biological control of Bemisia tabaci on greenhouse melons. Biological Control 36, 154162.CrossRefGoogle Scholar
Andrews, KL (1988) Latin American Research on Spodoptera frugiperda (Lepidoptera. Noctuidae). Florida Entomologist 71, 630653.CrossRefGoogle Scholar
Aragón-Sánchez, M (2017) Evaluación y manejo de Orius laevigatus, Anthocoris nemoralis (Hemiptera: Anthocoridae), Nesidiocoris tenuis y Macrolophus pygmaeus (Hemiptera: Miridae) como agentes de control biológico de Spodoptera exigua (Lepidoptera: Noctuidae) (Unpublished D. thesis). Facultad de Ciencia y Tecnología, Universidad de La Rioja, Spain. 139 pp.Google Scholar
Baños, HJ, Ruiz-Gil, T, del Toro-Benítez, M and Miranda-Babrera, I (2016) Consumo y respuesta funcional de Nesidiocoris tenuis Reuter (Hemiptera: Miridae) frente a estadios inmaduros de Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). Revista de Protección Vegetal 31, 217223.Google Scholar
Barnadas, I, Gabarra, R and Albajes, R (1998) Predatory capacity of two mirid bugs preying on Bemisia tabaci. Entomologia Experimentalis et Applicata 86, 215219.CrossRefGoogle Scholar
Beingolea, OD (1959) Notas sobre Hyanchloria denticornis Tsai Yu-Hsiao (Hemp.: Miridae) predador de huevos de Anonis texana Riley (Lepidop.: Noctuidae). Revista Peruana de Entomología Agrícola 2, 5159.Google Scholar
Bhatt, NA and Patel, MA (2018) Tomato bug, Nesidiocoris tenuis (Reuter): a zoophytophagous insect. Journal of Entomology and Zoology Studies 6, 15501556.Google Scholar
Blanco, CA, Pellegaud, JG, Nava-Camberos, U, Lugo-Barrera, D, Vega-Aquino, P, Coello, J, Terán-Vargas, AP and Vargas-Camplis, J (2014) Maize pests in Mexico and challenges for the adoption of integrated pest management programs. Journal of Integrated Pest Management 5, 19.CrossRefGoogle Scholar
Bueno, VHP, Van Lenteren, JC, Lins, JC, Calixto, AM, Montes, FC, Silva, DB, Santiago, LD and Pérez, LM (2013) New records of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) predation by Brazilian Hemipteran predatory bugs. Journal of Applied Entomology 137, 2934.CrossRefGoogle Scholar
Butler, CD and Trumble, JT (2012) The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae): life history, relationship to plant diseases, and management strategies. Terrestrial Artropod Reviwers 5, 87111.CrossRefGoogle Scholar
CAB International (2019 a) Spodoptera exigua (Hb.) distribution map. Series A (Agricultural). Commonwealth institute of Entomology. UK. Map 302. Available at https://www.cabi.org/ISC/abstract/20056600302.Google Scholar
CAB International (2019 b) Spodoptera frugiperda (J.E. Smith.). Invasive species compendium. Commonwealth institute of Entomology. UK. Datasheet 29810. Available at https://www.cabi.org/isc/datasheet/29810.Google Scholar
Calvo, J, Bolckmans, K, Stansly, PA and Urbaneja, A (2009) Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato. BioControl 54, 237246.CrossRefGoogle Scholar
Casmuz, A, Juárez, ML, Murúa, GM, Prieto, S, Medina, M, Willink, E and Gastaminza, G (2010) Review of the host plants of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista de la Sociedad Entomológica Argentina 69, 209231.Google Scholar
Cassis, G and Schuh, RT (2012) Systematics, biodiversity, biogeography, and host associations of the Miridae (Insecta: Hemiptera: Heteroptera: Cimicomorpha). Annual Review of Entomology 57, 377404.CrossRefGoogle Scholar
Castañé, C, Arnó, J, Gabarra, R and Alomar, O (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biological Control 59, 2229.CrossRefGoogle Scholar
Dávila, MD, Cerna, CE, Uribe, AL, García, MO, Ochoa, FY, Gallegos, MG and Landeros, FJ (2012) Susceptibility and resistance mechanisms to insecticides in Bactericera cockerelli (Sulc.) in Coahuila, Mexico. Revista Mexicana de Ciencias Agrícolas 3, 11451155.CrossRefGoogle Scholar
Desneux, N, Wajnberg, E, Wyckhuys, KAG, Burgio, G, Arpaia, S, Narváez-Vasquez, CA, González-Cabrera, J, Catalán Ruescas, D, Tabone, E, Frandon, J, Pizzol, J, Poncet, C, Cabello, T and Urbaneja, A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science 83, 197215.CrossRefGoogle Scholar
Encalada, CE and Viñas, L (1990) Ceratocapsus dispersus (Hemiptera, Miridae) en Piura: biología y capacidad depredadora en insectario. Revista Peruana de Entomología 32, 18.Google Scholar
Frechette, B, Dixon, AFG, Alauzet, C and Hemptinne, JL (2004) Age and experience influence patch assessment for oviposition by an insect predator. Ecological Entomology 29, 578583.CrossRefGoogle Scholar
Goergen, G, Kumar, PL, Sankung, SB, Togola, A and Tamò, M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PloS One 11. doi: org/10.1371/journal.pone.0165632.CrossRefGoogle Scholar
Hansen, A, Trumble, T, Stouthamer, R and Paine, T (2008) A new Huanglongbing species, “Candidatus Liberibacter psyllaurous” found to infect tomato and potato, is vectored by psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology 74, 58625865.CrossRefGoogle Scholar
Harizanova, V, Stoeva, A and Mohamedova, M (2012) Preliminary study on the invasive Acizzia jamatonica (Hemiptera: Psyllidae) and its predators in Bulgaria. Agricultural Science and Technology 4, 5661.Google Scholar
Izquierdo, JI, Solans, P and Vitalle, J (1994) Parasitoides y depredadores de Helicoverpa armigera (Hübner) en cultivos de tomate para consumo en fresco. Boletín de Sanidad Vegetal-Plagas 20, 521530.Google Scholar
Liefting, LW, Southerland, PW, Ward, LI, Paice, KL, Weir, BS and Clover, GR (2009) A new “Candidatus Liberibacter” species associated with diseases of solanaceous crops. Plant Disease 93, 208214.CrossRefGoogle ScholarPubMed
López, SN, Arce, RF, Villalba, VV and Cagnotti, C (2012) Biology of Tupiocoris cucurbitaceus (Hemiptera: Miridae), a predator of the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) in tomato crops in Argentina. Biocontrol Science and Technology 22, 11071117.CrossRefGoogle Scholar
Lundgren, JG (2011) Reproductive ecology of predaceous Heteroptera. Biological Control 59, 3752.CrossRefGoogle Scholar
Madden, AH and Chamberlin, FS (1945) Biology of the tobacco hornworm in the southern cigar-tobacco district. United States Department of Agriculture Technical Bulletin 896, 151.Google Scholar
Maes, JM (1998) Insectos de Nicaragua. Setab BOSAWAS, MARENA. Nicaragua 1, 1485.Google Scholar
Margaritopoulos, JT, Tsitsipis, JA and Perdikinds, DC (2003) Biological characteristics of the mirids Macrolophus coastalis and Macrolophus pygmaeus preying on the tobacco form of Myzus persicae (Hemiptera: Aphididae). Bulletin of Entomological Research 93, 3945.CrossRefGoogle Scholar
Martínez, AM, Baena, M, Figueroa, JI, Del Estal, P, Medina, M, Lara, EG and Pineda, S (2014) Primer registro de Engytatus varians (Distant) (Heteroptera: Miridae) en México y de su depredación sobre Bactericera cockerelli (Šulc) (Homoptera: Triozidae): Una revisión de su distribución y hábitos. Acta Zoológica Mexicana (nueva serie) 30, 617624.Google Scholar
Mena-Mocino, L (2016) Características biológicas y reproductivas de Engytatus varians (Distant) y Dicyphus maroccanus Wagner (Hemiptera: Miridae), depredadores zoofitófagos de plagas de solanáceas (Unpublished M.S. thesis). Instituto de Investigaciones Agropecuarias y Forestales. Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico. 74 p.Google Scholar
Mollá, HO (2013) Control Biológico de la Polilla del tomate Tuta Absoluta (Lepidoptera: Gelichiidae) mediante la gestión de míridos depredadores (Unpublished D. thesis). Facultad de Ciencias Biológicas. Universidad de Valencia. Valencia, Spain. 214 p.Google Scholar
Munyaneza, JE (2012) Zebra chip disease of potato: biology, epidemiology, and management. American Journal of Potato Research 89, 329350.CrossRefGoogle Scholar
Munyaneza, JE, Crosslin, JM and Upton, JE (2007) Association of Bactericera cockerelli (Homoptera: Psyllidae) with “zebra chip”, a new potato disease in southwestern United State and México. Journal of Economic Entomology 100, 656663.CrossRefGoogle Scholar
Munyaneza, JE, Sengoda, VG, Crosslin, JM, Garzón-Tiznado, JA and Cardenas-Valenzuela, OG (2009) First report of “Candidatus Liberibacter solanacearum” in pepper plants in Mexico. Plant Disease 93, 1076.Google ScholarPubMed
Nagoshi, RN and Meagher, RL (2008) Review of fall armyworm (Lepidoptera: Noctuidae) genetic complexity and migration. Florida Entomologists 91, 546554.Google Scholar
Osorio, A, Martínez, AM, Schneider, MI, Díaz, O, Corrales, JL, Avilés, MC and Pineda, S (2008) Monitoring of beet armyworm resistance to Spinosad and Methoxyfenozide in Mexico. Pest Management Science 64, 10011007.CrossRefGoogle ScholarPubMed
Pérez-Aguilar, DA (2016) Evaluación del potencial de control biológico del mírido Engytatus varians (Distant) y determinación de su susceptibilidad hacia distintos pesticidas (Unpublished M.S. thesis). Instituto de Investigaciones Agropecuarias y Forestales. Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico. 82 p.Google Scholar
Pérez-Aguilar, DA, Araújo Soares, M, Clepf Passos, L, Martínez, AM, Pineda, S and Carvalho, GA (2018) Lethal and sublethal effects of insecticides on Engytatus varians (Heteroptera: Miridae), a predator of Tuta absoluta (Lepidoptera: Gelechiidae). Ecotoxicology 27, 719728.CrossRefGoogle Scholar
Pineda, S, Medina, M, Figueroa, JI, Henry, TJ, Mena, LV, Chavarrieta, JM and Martínez, AM (2016) Life history, diagnosis, and biological aspects of Engytatus varians (Hemiptera: Miridae), a predator of Bactericera cockerelli (Hemiptera: Triozidae). Biocontrol Science and Technology 26, 10731086.CrossRefGoogle Scholar
Poitout, S and Bues, R (1974) Elevage de chenilles de veingt-huit especes de lepidopteres. Noctuidae et de deux especes d’ elevage selon les especes d’ Artiidae sur milieu artificiel simple. Particularités de I´ elevage selon les especes. Annales de Zoologie Ecologie Animale 6, 341411.Google Scholar
Ramirez-Ahuja, ML, Rodríguez-Leyva, E, Lomeli-Flores, JR, Torres-Ruiz, A and Guzmán-Franco, AW (2017) Evaluating combined use of a parasitoid and a zoophytophagous bug for biological control of the potato psyllid, Bactericera cockerelli. Biological Control 106, 915.CrossRefGoogle Scholar
Rim, H, Uefune, M, Ozawata, R and Takabayashi, J (2015) Olfatory response of the omnivorous mirid bug Nesidiocoris tenuis to eggplants infected by prey: specificity in prey development stages and prey species. Biological Control 91, 4754.CrossRefGoogle Scholar
Sanchez, JA (2009) Density thresholds for Nesidiocoris tenuis (Heteroptera: Miridae) in tomato crops. Biological Control 51, 493498.CrossRefGoogle Scholar
Sánchez, JA and Lacasa, A (2008) Impact of the zoophytophagous plant bug Nesidiocoris tenuis (Heteroptera: Miridae) on tomato yield. Journal of Economic Entomology 101, 18641870.CrossRefGoogle ScholarPubMed
Sayyed, HA, Naveed, M, Rafique, M and Arif, JM (2012) Detection of insecticides resistance in Spodoptera exigua (Lepidoptera: Noctuidae) depends upon insect collection methods. Pakistan Entomologist 34, 715.Google Scholar
Schuh, RT (1995) Plant Bugs of the World (Insecta: Heteroptera: Miridae). Systematic Catalog, Distributions, Host List, and Bibliography. New York: New York Entomological Society, p. 1329.Google Scholar
Silva, DB, Bueno, VHP, Montes, FC and van Lenteren, JC (2016) Population grown of three mirid predatoy bugs feeding on eggs and larvae of Tuta absoluta on tomato. BioControl 61, 545553.CrossRefGoogle Scholar
Trumble, J and Alvarado-Rodríguez, B (1993) Development and economic evaluation of a IPM program for fresh market tomato production in Mexico. Agriculture, Ecosystems & Environment 43, 267284.CrossRefGoogle Scholar
Urbaneja, A, Tapia, G and Stansly, P (2005) Influence of host plant and prey availability on developmental time and surviorship of Nesidiocoris tenuis (Het.: Miridae). Biocontrol Science and Technology 15, 513518.CrossRefGoogle Scholar
Urbaneja, A, Montón, H and Mollá, O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. Journal of Applied Entomology 133, 292296.CrossRefGoogle Scholar
Urbaneja, A, González-Cabrera, J, Arnó, J and Gabarra, R (2012) Prospects for the biological control in tomatoes of Mediterrean basin. Pest Management Science 68, 1251–1222.CrossRefGoogle Scholar
Valderrama, K, Granobles, J, Valencia, E and Sánchez, M (2007) Nesidiocoris tenuis (Hemiptera: Miridae) depredador en el cultivo de tabaco (Nicotiana tabacum). Revista Colombiana de Entomología 33, 141145.Google Scholar
van Lenteren, JC, Hemerik, L, Lins, JC and Bueno, VHP (2016) Functional responses of three neotropical mirid predators to eggs of Tuta absoluta on tomato. Insects 7, 34.CrossRefGoogle ScholarPubMed
van Lenteren, JC, Bueno, VHP, Smit, J, Soares, MA, Calixto, AM, Montes, FC and De Jong, P (2017) Predation of Tuta absoluta eggs during the nymphal stages of three Neotropical mirid predators on tomato. Bulletin of Insectology 70, 6974.Google Scholar
Vega-Gutiérrez, MT, Rodríguez, MJ, Díaz, GO, Bujanos, MR, Mota, SD, Martínez, JC, Lagunes, A and Garzón, TJ (2008) Susceptibility to insecticides in two Mexican populations of tomato-potato psyllid, Bactericera cockerelli (Sulc.) (Hemiptera: Triozaidae). Agrociencia 42, 463471.Google Scholar
Wei, D, Xian, X, Zhou, Z, Whang, Z, Xinghua, Z and Huang, J (1997) Preliminary study on the functional responses of Cyrtopeltis tenuis to Spodoptera litura. Acta Agriculturae Universitatis Henanensis 32, 5559.Google Scholar
Wyckhuys, GAK, Lu, K, Morales, H, Vazquez, LL, Legaspi, JC, Eliopoulos, PA and Hernández, LM (2013) Current status and potential of conservation biological control for agriculture in the developing World. Biological Control 65, 152167.CrossRefGoogle Scholar
Zar, JH (2014) Biostatistical Analysis. Pearson New International Edition, Harlow, United Kingdom.Google Scholar
Zheng, X-L, Cong, X-P, Wang, X-P and Lei, C-L (2011) A review of geographic distribution, overwintering and migration in Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Journal of the Entomological Research Society 13, 3948.Google Scholar