Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T09:10:52.800Z Has data issue: false hasContentIssue false

Potential of an alternative prey to disrupt predation of the generalist predator, Orius insidiosus, on the pest aphid, Aphis glycines, via short-term indirect interactions

Published online by Cambridge University Press:  10 October 2008

N. Desneux*
Affiliation:
Unité de Recherches Intégrées en Horticulture, I.N.R.A., 400 Route des Chappes, 06903 Sophia-Antipolis Cedex, France Department of Entomology, Purdue University, Smith Hall, 901 W. State Street, West Lafayette, IN 47907, USA 55108, USA
R.J. O'Neil
Affiliation:
Department of Entomology, Purdue University, Smith Hall, 901 W. State Street, West Lafayette, IN 47907, USA 55108, USA
*
*Author for correspondence Fax: (33) 4.92.38.66.77 E-mail: [email protected]

Abstract

Generalist insect predators can significantly impact the dynamics of pest populations; and, using alternative prey, they can rapidly establish in disturbed agroecosystems. However, indirect interactions between prey can occur, leading to either increased or decreased predation on focal prey. The present paper demonstrates how alternative prey can disrupt predation by the hemipteran Orius insidiosus on the soybean aphid Aphis glycines via short-term indirect interactions. We used laboratory microcosms to measure the impact of the predator on the population growth of the aphid in the presence of alternative prey, soybean thrips Neohydatothrips variabilis, and we characterized the foraging behaviour of the predator to assess prey preference. We showed that O. insidiosus predation on aphids was reduced in the presence of thrips and that this positive impact on aphids increased as thrips density increased. Results from the behavioural experiment support the hypothesis of a prey preference toward thrips. When prey-pest ratio is aphid-biased, short-term apparent commensalism between prey occurs in favour of the most abundant prey (aphids) with no switching behaviour appearing in O. insidiosus. These results demonstrate that potential indirect interactions should be taken into account when considering O. insidiosus as a biocontrol agent against the soybean aphid.

Type
Research Paper
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, P.A. & Matsuda, H. (1996) Positive indirect effects between prey species that share predators. Ecology 77, 610616.CrossRefGoogle Scholar
Atakan, E., Coll, M. & Rosen, D. (1996) Within-plant distribution of thrips and their predators: Effects of cotton variety and developmental stage. Bulletin of Entomological Research 86, 641646.CrossRefGoogle Scholar
Blaustein, L. & Chase, J.M. (2007) Interactions between mosquito larvae and species that share the same trophic level. Annual Review of Entomology 52, 489507.CrossRefGoogle ScholarPubMed
Butler, C.D. & O'Neil, R.J. (2006) Defensive response of soybean aphid (Hemiptera: Aphididae) to predation by insidious flower bug (Hemiptera: Anthocoridae). Annals of the Entomological Society of America 99, 317320.CrossRefGoogle Scholar
Butler, C.D. & O'Neil, R.J. (2007a) Life history characteristics of Orius insidiosus (Say) fed diets of soybean aphid, Aphis glycines Matsumura and soybean thrips, Neohydatothrips variabilis (Beach). Biological Control 40, 339346.CrossRefGoogle Scholar
Butler, C.D. & O'Neil, R.J. (2007b) Life history characteristics of Orius insidiosus (Say) fed Aphis glycines Matsumura. Biological Control 40, 333338.CrossRefGoogle Scholar
Callan, E.M.C. (1947) Technique for rearing thrips in the laboratory. Nature 160, 432.CrossRefGoogle ScholarPubMed
Casas, J. & Djemai, I. (2002) Canopy architecture and multitrophic interactions. pp. 174196 in Tscharntke, T. & Hawkins, B.A. (Eds) Multitrophic Level Interactions. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Cohen, A.C. (1990) Feeding adaptations of some predaceous Hemiptera. Annals of the Entomological Society of America 83, 12151223.CrossRefGoogle Scholar
Coll, M. (1996) Feeding and ovipositing on plants by an omnivorous insect predator. Oecologia 105, 214220.CrossRefGoogle ScholarPubMed
Coll, M. & Guershon, M. (2002) Omnivory in terrestrial arthropods: Mixing plant and prey diets. Annual Review of Entomology 47, 267297.CrossRefGoogle ScholarPubMed
Cook, S.M., Khan, Z.R. & Pickett, J.A. (2007) The use of push-pull strategies in integrated pest management. Annual Review of Entomology 52, 375400.CrossRefGoogle ScholarPubMed
Costamagna, A.C., Landis, D.A. & Brewer, M.J. (2008) The role of natural enemy guilds in Aphis glycines suppression. Biological Control 45, 368379.CrossRefGoogle Scholar
Desneux, N., O'Neil, R.J. & Yoo, H.J.S. (2006) Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: the identification of a key predator, and the effects of prey dispersion, predator density and temperature. Environmental Entomology 35, 13421349.CrossRefGoogle Scholar
Desneux, N., Decourtye, A. & Delpuech, J.M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology 52, 81106.CrossRefGoogle ScholarPubMed
Dixon, A.F.G. (1959) An experimental study of the searching behavior of the predatory Coccinellid beetle Adalia decempunctbata. Journal of Animal Ecology 28, 259281.CrossRefGoogle Scholar
Edwards, J.S. (1961) The action and composition of the saliva of an assassin bug Platymeris rhadamanthus Gaerst. (Hemiptera, Reduviidae). Journal of Experimental Biology 38, 6177.CrossRefGoogle Scholar
Eubanks, M.D. & Denno, R.F. (2000) Host plants mediate omnivore-herbivore interactions and influence prey suppression. Ecology 81, 936947.Google Scholar
Eubanks, M.D., Styrsky, J.D. & Denno, R.F. (2003) The evolution of omnivory in heteropteran insects. Ecology 84, 25492556.CrossRefGoogle Scholar
Evans, H.F. (1976) Role of predator-prey size ratio in determining efficiency of capture by Anthocoris nemorum and escape reactions of its prey, Acyrthosiphum pisum. Ecological Entomology 1, 8590.CrossRefGoogle Scholar
Harwood, J.D., Desneux, N., Yoo, H.Y.S., Rowley, D., Greenstone, M.H., Obrycki, J.J. & O'Neil, R.J. (2007) Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: A molecular approach. Molecular Ecology 16, 43904400.CrossRefGoogle ScholarPubMed
Henaut, Y., Alauzet, C., Dargagnon, D. & Lambin, M. (1999) Visual learning in larval Orius majusculus a polyphagous predator. Entomologia Experimentalis et Applicata 90, 103107.CrossRefGoogle Scholar
Herman, J.C. (1988) How a soybean plant develops. Special report no. 53, Iowa State Extension.Google Scholar
Holt, R.D. (1977) Predation, apparent competition, and structure of prey communities. Theoretical Population Biology 12, 197229.CrossRefGoogle ScholarPubMed
Holt, R.D. & Lawton, J.H. (1994) The ecological consequences of shared natural enemies. Annual Review of Ecology and Systematics 25, 495520.CrossRefGoogle Scholar
Isenhour, D.J. & Marston, N.L. (1981) Seasonal cycles of Orius insidiosus (Hemiptera, Anthocoridae) in Missouri soybeans. Journal of the Kansas Entomological Society 54, 129142.Google Scholar
Isenhour, D.J. & Yeargan, K.V. (1981) Predation by Orius insidiosus on the soybean thrips, Sericothrips variabilis: Effect of prey stage and density. Environmental Entomology 10, 496500.CrossRefGoogle Scholar
Kiman, Z.B. & Yeargan, K.V. (1985) Development and reproduction of the predator Orius insidiosus (Hemiptera, Anthocoridae) reared on diets of selected plant-material and arthropod prey. Annals of the Entomological Society of America 78, 464467.CrossRefGoogle Scholar
Lafferty, K.D. & Kuris, A.M. (2002) Trophic strategies, animal diversity and body size. Trends in Ecology & Evolution 17, 507513.CrossRefGoogle Scholar
Lundgren, J.G., Wyckhuys, K.A.G. & Desneux, N. Population responses by Orius insidiosus to vegetational diversity. Biocontrol, in press (doi 10.1007/s10526-008-9165-x).Google Scholar
Manly, B.F.J. (1974) A model for certain types of selection experiments. Biometrics 30, 281294.CrossRefGoogle Scholar
Manly, B.F.J., Miller, P. & Cook, L.M. (1972) Analysis of a selective predation experiment. American Naturalist 106, 719736.CrossRefGoogle Scholar
Murdoch, W.W., Chesson, J. & Chesson, P.L. (1985) Biological control in theory and practice. American Naturalist 125, 344366.CrossRefGoogle Scholar
Ottoni, E.B. (2000) EthoLog 2.2 – a tool for the transcription and timing of behavior observation sessions. Behavior Research Methods, Instruments, and Computers 32, 446449.CrossRefGoogle ScholarPubMed
Pfannenstiel, R.S. & Yeargan, K.V. (2002) Identification and diel activity patterns of predators attacking Helicoverpa zea (Lepidoptera: Noctuidae) eggs in soybean and sweet corn. Environmental Entomology 31, 232241.CrossRefGoogle Scholar
Pfannenstiel, R.S., Hunt, R.E. & Yeargan, K.V. (1995) Orientation of a hemipteran predator to vibrations produced by feeding caterpillar. Journal of Insect Behavior 8, 19.CrossRefGoogle Scholar
Prasad, R.P. & Snyder, W.E. (2006) Polyphagy complicates conservation biological control that targets generalist predators. Journal of Applied Ecology 43, 343352.CrossRefGoogle Scholar
Ragsdale, D.W., Voegtlin, D.J. & O'Neil, R.J. (2004) Soybean aphid biology in North America. Annals of the Entomological Society of America 97, 204208.CrossRefGoogle Scholar
Readio, J. & Sweet, M.H. (1982) A review of the Geocorinae of the United States East of the 100th Meridian (Hemiptera: Lygaeidae). Miscellaneous Publications of the Entomological Society of America 12, 191.Google Scholar
Rondon, S.I., Cantliffe, D.J. & Price, J.F. (2004) The feeding behavior of the bigeyed bug, minute pirate bug, and pink spotted lady beetle relative to main strawberry pests. Environmental Entomology 33, 10141019.CrossRefGoogle Scholar
Rosenheim, J.A., Wilhoit, L.R. & Armer, C.A. (1993) Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96, 439449.CrossRefGoogle ScholarPubMed
Rutledge, C.E. & O'Neil, R.J. (2005) Orius insidiosus (Say) as a predator of the soybean aphid, Aphis glycines Matsumura. Biological Control 33, 5664.CrossRefGoogle Scholar
Rutledge, C.E., O'Neil, R.J., Fox, T.B. & Landis, D.A. (2004) Soybean aphid predators and their use in IPM. Annals of the Entomological Society of America 97, 240248.CrossRefGoogle Scholar
SAS Institute. (1999) SAS/Stat user's guide, release 8. ed. SAS Institute, Cary, NC, USA.Google Scholar
Settle, W.H., Ariawan, H., Astuti, E.T., Cahyana, W., Hakim, A.L., Hindayana, D., Lestari, A.S., Pajarningsih, & Sartanto, (1996) Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77, 19751988.CrossRefGoogle Scholar
Symondson, W.O.C., Sunderland, K.D. & Greenstone, M.H. (2002) Can generalist predators be effective biocontrol agents? Annual Review of Entomology 47, 561594.CrossRefGoogle ScholarPubMed
van Veen, F.J.F., Morris, R.J. & Godfray, H.C.J. (2006) Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annual Review of Entomology 51, 187208.CrossRefGoogle ScholarPubMed
Venzon, M., Janssen, A. & Sabelis, M.W. (2002) Prey preference and reproductive success of the generalist predator Orius laevigatus. Oikos 97, 116124.CrossRefGoogle Scholar
Weisser, W.W. (1994) Age-dependent foraging behavior and host instar preference of the aphid parasitoid Lysiphlebus cardui. Entomologia Experimentalis et Applicata 76, 133141.CrossRefGoogle Scholar
Wiedenmann, R.N. & Smith, J.R. Jr., (1997) Attributes of natural enemies in ephemeral crop habitats. Biological Control 10, 1622.CrossRefGoogle Scholar
Wootton, J.T. (1994) The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology and Systematics 25, 443466.CrossRefGoogle Scholar
Wyckhuys, K.A.G., Stone, L., Desneux, N., Hoelmer, K.A., Hopper, K.R. & Heimpel, G.E. (2008) Parasitism of the soybean aphid Aphis glycines by Binodoxys communis: the role of aphid defensive behavior and parasitoid reproductive performance. Bulletin of Entomological Research 98, 361370.CrossRefGoogle ScholarPubMed
Xu, X.O., Borgemeister, C. & Poehling, H.M. (2006) Interactions in the biological control of western flower thrips Frankliniella occidentalis (Pergande) and two-spotted spider mite Tetranychus urticae Koch by the predatory bug Orius insidiosus Say on beans. Biological Control 36, 5764.CrossRefGoogle Scholar
Zehnder, G., Gurr, G.M., Kuhne, S., Wade, M.R., Wratten, S.D. & Wyss, E. (2007). Arthropod pest management in organic crops. Annual Review of Entomology 52, 5780.CrossRefGoogle ScholarPubMed