Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T18:06:35.972Z Has data issue: false hasContentIssue false

Polymorphism in male genitalia of Aedes (Ochlerotatus) scapularis Rondani, 1848

Published online by Cambridge University Press:  18 April 2017

V. Petersen*
Affiliation:
Laboratório de Parasitologia, Instituto Butantan, Av. Vital Brazil – 1500, São Paulo, SP 05503-000, Brazil Programa de Pós-Graduação Biologia da Relação Patógeno-Hospedeiro, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes – 2415, São Paulo, SP 05508-900, Brasil
F. Virginio
Affiliation:
Laboratório de Parasitologia, Instituto Butantan, Av. Vital Brazil – 1500, São Paulo, SP 05503-000, Brazil Programa de Pós-Graduação Biologia da Relação Patógeno-Hospedeiro, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes – 2415, São Paulo, SP 05508-900, Brasil
L. Suesdek
Affiliation:
Laboratório de Parasitologia, Instituto Butantan, Av. Vital Brazil – 1500, São Paulo, SP 05503-000, Brazil Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar – 470, São Paulo, SP 05403-000, Brasil
*
*Author for correspondence Phone / Fax: +55 11 2627-9785 E-mail: [email protected]

Abstract

Morphology of male genitalia of culicids is generally species-specific and often used as a taxonomic marker. However, some characters of the male genitalia vary intraspecifically and are not taxonomically diagnostic. This might be the case of Aedes scapularis, a Neotropical culicid with vector competence for arboviruses and filarial worms. Males of this species may or not present a retrorse process (RP) in the genitalic claspette filaments, which led authors to suspect that this variance might be indicative of population divergence or incipient speciation process. This suspicion has not been investigated hitherto and it is not known if there are variable patterns of RPs. We hypothesized that the presence of the RP varies intraspecifically in Ae. scapularis and then we statistically evaluated the variability of this character in a single population. To this study the genitalia of 73 males of Ae. scapularis were prepared, and their RPs were meristically quantified and categorized according to the phenotypes observed. We noted that the presence or RPs is a polymorphic character because it varied inter and intra-individually. The presence of a single RP on each claspette filament was the predominant pattern (77%), but absent or multiple RPs in each filament were also found either in bilateral symmetry or asymmetry. Thus, we conclude that the presence of RPs owing to its high variability is not indicative of populational divergence or diagnostic of species complex within Ae. scapularis.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Arnell, J.H. (1976) Mosquito studies (Diptera, Culicidae). XXXIII – a revision of the Scapularis group of Aedes (Ochlerotatus). Contribution of American Entomological Institute 13, 1144.Google Scholar
Consoli, R.A.G.B. & Oliveira, R.L. (1994) Principais mosquitos de importância sanitária no Brasil. Rio de Janeiro, Fiocruz, 228 pp.Google Scholar
Eberhard, W.G. (1985) Sexual Selection and Animal Genitalia. Cambridge, MA, Harvard University Press, 244 pp.Google Scholar
Float, K.D. & Fox, A.S. (2000) Flies under stress: a test of fluctuating asymmetry as a biomonitor of environmental quality. Ecological Applications 10, 15411550.Google Scholar
Forattini, O.P. (2002) Culicidologia médica 2. São Paulo, University of São Paulo, Edusp, 860 pp.Google Scholar
Hribar, L.J. (1994) Geographic variation of male genitalia of Anopheles nuneztovari (Diptera: Culicidae). American Mosquito Control Association 26, 132144.Google Scholar
Huber, B.A. (1995) Genital morphology and copulatory mechanics in Anyphaena accentuate (Anyphaenidae) and Clubiona pallidula (Clubionidae: Araneae). Journal of Zoology 235, 689702.Google Scholar
Huber, B.A. (2004) Evidence for functional segregation in the directionally asymmetric male genitalia of the spider Metagonia mariguitarensis (González-Sponga) (Pholcidae: Araneae). Journal of Zoology 262, 317326.Google Scholar
Lorenz, C. & Suesdek, L. (2013) Evaluation of chemical preparation on insect wing shape for geometric morphometrics. American Journal of Tropical Medicine and Hygiene 89, 928931.Google Scholar
Lourenço-de-Oliveira, R. & Deane, L.M. (1995) Presumed Dirofilaria immitis infections in wild-caught Aedes taeniorhynchus and Aedes scapularis in Rio de Janeiro, Brazil. Memórias do Instituto Oswaldo Cruz 90, 387388.Google Scholar
Moratore, C. (2009) Genetic and morphological patterns in populations of Culex quinquefasciatus (Diptera: Culicidae) . Dissertation of Master degree in Science, University of Sao Paulo, Institute of Biomedical Sciences, São Paulo, Brazil.Google Scholar
Motoki, M.T., Santos, C.L.S.D. & Sallum, M.A.M. (2009) intraspecific variation on the aedeagus of Anopheles oswaldoi (Peryassú) (Diptera: Culicidae). Neotropical Entomology 38, 144148.Google Scholar
Mpho, M., Callaghan, A. & Holloway, G.J. (2002) Temperature and genotypic effects on life history and fluctuating asymmetry in a field strain of Culex pipiens . Heredity 88, 307312.CrossRefGoogle Scholar
Palmer, A.R. & Strobeck, C. (2003) Fluctuating asymmetry revisited. 279–319 pp. in Polak, M. (Ed.) Developmental Instability (DI): Causes and Consequences. New York, Oxford Univ. Press.Google Scholar
Pauvolid-Corrêa, A., Kenney, J.L., Couto-Lima, D., Campos, Z.M., Schatzmayr, H.G., Nogueira, R.M., Brault, A.C. & Komar, N. (2013) Ilheus virus isolation in the Pantanal, west-central Brazil. PLoS Neglected Tropical Diseases 7, 18.Google Scholar
Peruzin, M.C. (2009) Comparative populational analyses of Culex quinquefasciatus of two sites of Sao Paulo State . Dissertation of Master degree in Science, University of Sao Paulo, Institute of Biomedical Sciences, São Paulo, Brazil.Google Scholar
Petersen, V. (2012) Characterization of three populations of Ochlerotatus scapularis (Rondani, 1848) of the Rio de Janeiro-Sao Paulo, using morphological and genetic markers . Dissertation of Master degree in Science, University of Sao Paulo, Institute of Biomedical Sciences, São Paulo, Brazil.Google Scholar
Petersen, V., Devicari, M. & Suesdek, L. (2015) High morphological and genetic variabilities of Aedes scapularis, a potential vector of filarias and arboviruses. Parasites & Vectors 8, 128.CrossRefGoogle Scholar
Rachou, R.G., Lima, M.M., Neto, J.A.F. & Martins, C.M. (1995) Inquérito epidemiológico de filariose bancroftiana em uma localidade de Santa Catarina, como fase preliminar de uma prova profilática. Constatação de transmissão extradomiciliária por um novo vetor, Aedes scapularis . Revista Brasileira de Malariologia e Doenças Tropicais 7, 5170.Google Scholar
Sallum, M.A.M., Uramoto, K. & Forattini, O.P. (1988) Redescription, and resurrection from synonymy, of Aedes (Ochlerotatus) rhyacophilus Costa Lima, 1933. Memórias do Instituto Oswaldo Cruz 83, 6777.CrossRefGoogle Scholar
Sallum, M.A.M., Foster, P.G., Santos, C.L.S.D., Flores, D.C., Motoki, M.T. & Bergo, E.S. (2010) Resurrection of two species from synonymy of Anopheles (Nyssorhynchus) strodei Root, and characterization of a distinct morphological form from the Strodei Complex (Diptera: Culicidae). Journal of Medical Entomology 47, 504526.Google Scholar
Shapiro, S.S. & Wilk, M.B. (1965) An analysis of variance test for normality (complete samples). Biometrika Trust Stable 52, 591611 pp. Available online at http://www.jstor.org/stable/2333709.CrossRefGoogle Scholar
Song, H. & Wenzel, J.W. (2008) Mosaic pattern of genital divergence in three populations of Schistocerca lineata Scudder, 1899 (Orthoptera: Acrididae: Cyrtacanthacridinae). Biology Journal Linnean Society 94, 289301.Google Scholar
Souza, J.M.G.A., Gouveia, M., Perondini, A.L.P. & Selivon, D. (2007) Asymmetry frontal bristles and postocular setae in species and hybrids of the Anastrepha fraterculus complex (Diptera, Tephritidae). Genetics and Molecular Biology 30, 145151.Google Scholar
VanValen, L. (1962) A study of fluctuating asymmetry. Evolution 16, 125142.CrossRefGoogle Scholar
Vasconcelos, P.F.C., Costa, Z.G., Travassos da Rosa, E.S., Luna, E., Rodrigues, S.G., Barros, V.L.R.S., Dias, J.P., Monteiro, H.A.O., Oliva, O.F.P., Vasconcelos, H.B., Oliveira, R.C., Sousa, M.R.S., Barbosa Da Silva, J., Cruz, A.C.R., Martins, E.C. & Travassos Da Rosa, J.F.S. (2001) Epidemic of Jungle Yellow Fever in Brazil, 2000: implications of climatic alterations in disease spread. Journal of Medical Virology 65, 598604.Google Scholar
Woods, R.E., Sgro, C.M., Hercus, M.J. & Hoffmann, A.A. (1999) The association between fluctuating asymmetry, trait variability, trait heritability, and stress: a multiply replicated experiment on combined stresses in Drosophila melanogaster . Evolution 53, 493505.Google Scholar