Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T19:22:08.398Z Has data issue: false hasContentIssue false

Physiological Investigations into the Heart Function of Arthropods

The Heart of Periplaneta americana*

Published online by Cambridge University Press:  10 July 2009

Nelly E. Krijgsman-Berger
Affiliation:
Zoology Department, University of Cape Town.

Extract

Perfusion of the isolated heart of Periplaneta americana with caffeine, digitalin, acetylcholine, nicotine and lobeline shows that the pacemaker of this heart is different from the “ myogenic centre ” of the vertebrate heart.

The action of strychnine, morphine and apomorphine on this heart preparation affords evidence of the existence of a neurogenic pacemaker.

This pacemaker is stimulated by suitable concentrations of acetylcholine, nicotine, lobeline and pilocarpine, while it is inhibited by atropine. Acetylcholine and tetraethyl pyrophosphate show a synergistic action. Atropine and tetraethyl pyrophosphate, like acetylcholine and curare, show an antagonistic action. These results prove that the neurogenic pacemaker possesses cholinergic properties.

Adrenaline stimulates the insect heart and ergotamine inhibits it, thus suggesting that the insect heart probably also has adrenergic properties.

On the basis of the present work and the results obtained by other investigators, a theory is put forward that the heart mechanism of most arthropods consists of a neurogenic pacemaker with adrenergic properties, controlled by a cholinergic accelerating nerve. This mechanism bears some resemblance to the sympathetic nerve system of vertebrates.

Rotenone strongly counteracts the action of acetylcholine, tetraethyl pyrophosphate, nicotine, lobeline, pilocarpine and digitalin on the insect heart. Its point of action, however, remains obscure at the moment.

The opposing action of rotenone and tetraethyl pyrophosphate is an indication that a combination of these insecticides for pest control is not to be recommended.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrose, A. M. & Haag, H. B. (1936). Industr. Engng Chem., 28, p. 315.CrossRefGoogle Scholar
Ambrose, A. M. & Haag, H. B. (1937). Industr. Engng Chem., 29, p. 429.CrossRefGoogle Scholar
Ambrose, A. M. & Haag, H. B. (1938). Industr. Engng Chem., 30, p. 592.CrossRefGoogle Scholar
Armstrong, F., Maxfield, M., Prosser, C. L. & Schoepfle, G. (1939). Biol. Bull., 77, p. 327.Google Scholar
Bain, W. A. (1929). Quart. J. exp. Physiol., 19, p. 297.CrossRefGoogle Scholar
Baylor, E. R. (1942). Biol. Bull., 83, p. 165.CrossRefGoogle Scholar
Bonnet, V. (1937). C. R. Soc. Biol., 124, pp. 993, 996.Google Scholar
Carlson, A. J. (1904). Amer. J. Physiol., 12, pp. 67, 471.CrossRefGoogle Scholar
Carlson, A. J. (1905a). Amer. J. Physiol., 13, pp. 217, 396.CrossRefGoogle Scholar
Carlson, A. J. (1905b). Amer. J. Physiol., 15, pp. 99, 137, 207.CrossRefGoogle Scholar
Carlson, A. J. (1907). Amer. J. Physiol., 17, pp. 177, 478.CrossRefGoogle Scholar
Carlson, A. J. (1908). Amer. J. Physiol., 21, pp. 1, 11, 19, 149.CrossRefGoogle Scholar
Carlson, A. J. (1909). Ergebn. Physiol., 1909, p. 371.CrossRefGoogle Scholar
Carlson, A. J. (1922). J. gen. Physiol., 4, p. 559.CrossRefGoogle Scholar
Chadwick, L. E. & Hill, D. L. (1947). J. Neurophysiol., 10, p. 235.CrossRefGoogle Scholar
Davenport, D. (1941). Physiol. Zool., 14, p. 178.CrossRefGoogle Scholar
Davenport, D. (1942). Biol. Bull., 82, p. 255.CrossRefGoogle Scholar
Davenport, D., Loomis, J. W. & Opler, C. F. (1940). Biol. Bull., 79, p. 498.CrossRefGoogle Scholar
Garrey, W. E. (1922). J. gen. Physiol., 4, p. 149.CrossRefGoogle Scholar
Garrey, W. E. (1942). Amer. J. Physiol., 136, p. 182.CrossRefGoogle Scholar
Guillebau, A. & Luchsinger, B. (1882). Arch. ges. Physiol., 28, p. 1.CrossRefGoogle Scholar
Hamilton, H. L. (1939). J. cell. comp. Physiol., 13, p. 91.CrossRefGoogle Scholar
van Hasselt, E. H. (1910). Verh. Akad. Wet., Amst., 19, p. 704.Google Scholar
Heinbecker, P. (1936). Amer. J. Physiol., 117, p. 686.CrossRefGoogle Scholar
Hogben, L. T. & Hobson, A. D. (1924). Brit. J. exp. Biol., 1, p. 487.CrossRefGoogle Scholar
Krijgsman, B. J., Dresden, D. & Berger, N. E. (1950). Bull. ent. Res., 41, p. 141.CrossRefGoogle Scholar
Krijgsman, B. J. & Krijgsman, N. E. (1950). Nature, Lond., 165, p. 936.CrossRefGoogle Scholar
Obreshkove, V. (1942). Proc. Soc. exp. Biol. Med., 49, p. 427.CrossRefGoogle Scholar
Prosser, C. L. (1942). Biol. Bull., 83, p. 145.CrossRefGoogle Scholar
Richards, A. G. jr & Cutkomp, L. K. (1945). J. cell. comp. Physiol., 26, p. 57.CrossRefGoogle Scholar
Roeder, K. D., Kennedy, N. K. & Samson, E. A. (1947). J. Neurophysiol., 10, p. 1.CrossRefGoogle Scholar
Roeder, K. D. & Roeder, S. (1939). J. cell. comp. Physiol., 14, p. 1.CrossRefGoogle Scholar
Schallek, W. & Wiersma, C. A. G. (1948). J. cell. comp. Physiol., 31, p. 35.CrossRefGoogle Scholar
Tobias, J. M., Kollros, J. J. & Savit, J. (1946). J. cell. comp. Physiol., 28, p. 159.CrossRefGoogle Scholar
Welsh, J. H. (1939). Physiol. Zool., 12, p. 231.CrossRefGoogle Scholar
Welsh, J. H. (1942). J. cell. comp. Physiol., 19, p. 271.CrossRefGoogle Scholar
Welsh, J. H. & Schallek, W. (1946). Physiol. Rev., 26, p. 447.CrossRefGoogle Scholar
Wiersma, C. A. G. & Novitski, E. (1942). J. exp. Biol., 19, p. 255.CrossRefGoogle Scholar
Yeager, J. F. (1938). J. agric. Res., 56, p. 267.Google Scholar