Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T23:59:45.180Z Has data issue: false hasContentIssue false

Phylogenetic relationships between genera Dorcadion, Lamia, Morimus, Herophila and some other Lamiinae (Coleoptera: Cerambycidae) based on chromosome and CO1 gene sequence comparison

Published online by Cambridge University Press:  04 December 2019

Themis Giannoulis*
Affiliation:
Department of Biochemisty and Biotechnology, Laboratory of Genetics, Comparative and Evolution Biology, University of Thessaly, 41221Larissa, Greece
Anne-Marie Dutrillaux
Affiliation:
Institut de Systématique, Evolution, Biodiversité.ISYEB-UMR 7505-CNRS, MNHN,UMPC, EPHE. Muséum National d'Histoire Naturelle, Sorbonne Universités. 57, rue Cuvier, CP32. 75005Paris, France
Constantina Sarri
Affiliation:
Department of Biochemisty and Biotechnology, Laboratory of Genetics, Comparative and Evolution Biology, University of Thessaly, 41221Larissa, Greece
Zissis Mamuris
Affiliation:
Department of Biochemisty and Biotechnology, Laboratory of Genetics, Comparative and Evolution Biology, University of Thessaly, 41221Larissa, Greece
Bernard Dutrillaux
Affiliation:
Institut de Systématique, Evolution, Biodiversité.ISYEB-UMR 7505-CNRS, MNHN,UMPC, EPHE. Muséum National d'Histoire Naturelle, Sorbonne Universités. 57, rue Cuvier, CP32. 75005Paris, France
*
Author for correspondence: Themis Giannoulis, Email: [email protected]

Abstract

A dual molecular and cytogenetic study was performed with the aim to improve the controversial systematic classification of some species of Lamiinae (Coleoptera: Cerambycidae). The karyotypes of species belonging to genera Morimus, Herophila, Dorcadion, Neodorcadion and Lamia share a number of characters, which differentiate them from other species, belonging to genera Phytoecia, Parmena and Monochamus. The karyotypes of the last three species comprise 20 chromosomes, mostly metacentric or sub-metacentric, as in the presumed Cerambycidae ancestors. The karyotypes of the former species share many characters derived from the Lamiinae ancestors by a number of chromosome fissions and inversions indicating their monophyly. Comparisons of the CO1 gene sequence also show the monophyly of Morimus, Lamia, Herophila and Dorcadion and their distant relationship with others. These convergent results allow us to propose a phylogenetic classification of these genera, which places the monospecific genus Lamia close to Dorcadion, clearly separates Dorcadion and Neodorcadion and places Herophila closer to Morimus than to Dorcadion/Lamia. The genus Morimus is the most derived. CO1 mutations loosely separate the forms M. asper and M. funereus, which have similar karyotypes and behaviour and copulate in captivity. The form M. ganglebaueri may have a funereus X asper hybrid origin.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, A, Kudoh, K and Saito, K (1971) Chromosome study of beetles III: a chromosome survey of 18 species of the sub-family Lamiinae (Cerambycidae). Science Reports of the Hirosaki University 18, 5363.Google Scholar
Angus, RB (1982) Separation of two species standing as Helophorus aquaticus (L.) (Coleoptera, Hydrophilidae) by banded chromosome analysis. Systematic Entomology 7, 265281. https://doi.org/10.1111/j.1365-3113.1982.tb00444.x.CrossRefGoogle Scholar
Angus, RB (1988) A new sibling species of Helophorus f. (Coleoptera: Hydrophilidae), revealed by chromosome analysis and hybridisation experiments. Aquatic Insects 10, 171183. https://doi.org/10.1080/01650428809361325.CrossRefGoogle Scholar
Bousquet, Y, Heffern, DJ, Bouchard, P and Nearns, EH (2009) Catalogue of family-group names in Cerambycidae (Coleoptera). Zootaxa 2321, 180.CrossRefGoogle Scholar
Brown, WM (1985) The mitochondrial genome of animals. In MacIntyre, R (ed.), Molecular Evolutionary Genetics, New York: Plenum Press, pp. 95130.CrossRefGoogle Scholar
Cesari, M, Marescalchi, O, Francardi, V and Mantovani, B (2005) Taxonomy and phylogeny of European Monochamus species: first molecular and karyological data. Journal of Zoological Systematics and Evolutionary Research 43, 17.CrossRefGoogle Scholar
Dutrillaux, A-M and Dutrillaux, B (2009) Sex chromosome rearrangements in Polyphaga beetles. Sex Development 3, 4354.CrossRefGoogle ScholarPubMed
Dutrillaux, AM and Dutrillaux, B (2011) Y-chromosome disomy and trisomy in Scarabaeid and Cerambycid beetles. Cytogenetic and Genome Research 132, 195202.CrossRefGoogle ScholarPubMed
Dutrillaux, AM and Dutrillaux, B (2014) Chromosome evolution of some Palaearctic species of Monochamus (Coleoptera : Cerambycidae : Lamiinae). Annales de la Societe Entomologique de France 50, 213218. http://dx.doi.org/10.1080/00379271.2014.937599.CrossRefGoogle Scholar
Dutrillaux, AM, Moulin, S, Dutrillaux, B (2006) Use of pachytene stage of spermatocytes for karyotypic studies in insects. Chromosome Res 14, 549557.CrossRefGoogle ScholarPubMed
Gershoni, M, Templeton, AR and Mishmar, D (2009) Mitochondrial bioenergetics as a major motive force of speciation. Bioessays 31, 642650.CrossRefGoogle ScholarPubMed
Hill, G (2016) Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecology and Evolution 6, 58315842.CrossRefGoogle ScholarPubMed
Howell, WM and Black, DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloĩdal developer: a one-step method. Experientia 36, 1014.CrossRefGoogle Scholar
Huelsenbeck, JP and Ronquist, F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754e755.CrossRefGoogle ScholarPubMed
Kudoh, K, Abe, A and Saito, K (1972) Chromosome studies in beetles.V: male germ cell chromosomes of two species of the genus Monochamus (Cerambycidae). Science Reports of the Hirosaki University 19, 1518.Google Scholar
Lane, N (2009) On the origin of bar codes. Nature 462, 272274.CrossRefGoogle ScholarPubMed
Larkin, MA, Blackshields, G, Brown, NP, Chenna, R, McGettigan, PA, McWilliam, H, Valentin, F, Wallace, IM, Wilm, A, Lopez, R, Thompson, JD, Gibson, TJ and Higgins, DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948.CrossRefGoogle ScholarPubMed
Löbl, I and Smetana, A (2010) Catalog of Palaearctic Coleoptera, vol. 6. Chrysomeloidea. Stenstrup: Apollo books. 924 pp.Google Scholar
Monne, ML, Monne, MA and Wang, Q (2017) General morphology, classification and biology of Cerambycidae. In Wang, Q (ed.), Cerambycidae of the World. Biology and Pest Management. Boca Raton, London, New York: CRC Press, pp. 170.Google Scholar
Okutaner, AY, zdjikmen, H, Yûksel, E and Koçak, Y (2011) Some cytogenetic observations of Morimus orientalis Reitter, 1894 (Coleoptera : Cerambycidae : Lamiini : Lamiini). Munis Entomology & Zoology 6, 912919.Google Scholar
Richly, E and Leister, D (2004) NUMTs in sequenced eukaryotic genomes. Molecular Biology and Evolution 21, 10811084.CrossRefGoogle ScholarPubMed
Simon, C, Frati, F, Beckenbach, A, Crespi, B, Liu, H and Flook, P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Smith, SG and Virkki, N (1978) Animal Cytogenetics, Vol. 3 Insecta 5 Coleoptera. Berlin: Gebrûder Borntraeger, pp. 236290.Google Scholar
Solano, E, Mancini, E, Ciucci, P, Mason, F, Audisio, P, Antonini, G (2013) The EU protected taxon Morimus funereus Mulsant, 1862 (Coleoptera: Cerambycidae) and its western Palaearctic allies: Systematics and conservation outcomes. Conservation Genetics 14, 683694.CrossRefGoogle Scholar
Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M and Kumar, S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Teppner, H (1966) Chromosomenzahlen einiger mitteleuropäischer Cerambycidae (coleoptera). Chromosoma (Berl.) 19, 113125.CrossRefGoogle Scholar