Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T06:03:18.092Z Has data issue: false hasContentIssue false

Phenology of the sugar beet weevil, Bothynoderes punctiventris Germar (Coleoptera: Curculionidae), in Croatia

Published online by Cambridge University Press:  27 November 2018

Z. Drmić*
Affiliation:
Department of Agricultural Zoology, University of Zagreb, Faculty of Agriculture, Svetošimunska 25, Zagreb 10000, Croatia
M. Čačija
Affiliation:
Department of Agricultural Zoology, University of Zagreb, Faculty of Agriculture, Svetošimunska 25, Zagreb 10000, Croatia
H. Virić Gašparić
Affiliation:
Department of Agricultural Zoology, University of Zagreb, Faculty of Agriculture, Svetošimunska 25, Zagreb 10000, Croatia
D. Lemić
Affiliation:
Department of Agricultural Zoology, University of Zagreb, Faculty of Agriculture, Svetošimunska 25, Zagreb 10000, Croatia
R. Bažok
Affiliation:
Department of Agricultural Zoology, University of Zagreb, Faculty of Agriculture, Svetošimunska 25, Zagreb 10000, Croatia
*
*Author for correspondence Phone: 0038512393654 Fax: 0038512393777 E-mail: [email protected]

Abstract

The sugar beet weevil (SBW), Bothynoderes punctiventris Germar, 1824, is a significant pest in most of Eastern Europe. Here, the SBW is described and its seasonal activity characterized, in terms of its different developmental stages in relation to Julian days (JDs), degree-day accumulations (DDAs), and precipitation, as a key to improving monitoring and forecasting of the pest. The phenology and population characteristics of SBW were investigated in sugar beet fields in eastern Croatia over a 4-year period (2012–2015). By using the degree-day model (lower development threshold of 5°C, no upper development threshold, biofix 1 January), the first emergence of overwintering adults was determined as becoming established when the DDA reached 20. The adult emergence was completed when the DDA reached 428. SBW males emerged first, following which the females dominated the adult population. Overwintering adults were present in the field until early July. In August, adults of the offspring generation began to appear. The eggs laid by the overwintering generation required, on average, 10–15 days to develop into larvae; however, eggs were found in soil samples over a period of 102 days (between JDs 112 and 214). Larvae were present in the soil samples over a period of a maximum of 143 days (the first larvae were established on JD 122 and the last one on JD 265), and pupae were established in the soil over a period of 102 days (between JDs 143 and 245). This study provides important data for understanding SBW population dynamics and developing potential population dynamic models for pest forecasting on a regional scale.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ARM GDM® software, Revision 2016.2 6 May 2016 (2016).Google Scholar
Auersch, O. (1954) Über die vorbereitung, Biologie, Histologie und Epidemiologie des Rübenderbrüsslers (Bothynoderes punctiventris Germ.). Wissenschaftliche Zeitschrift der Martin-Luter-Universität Halle Wittenberg 3, 601658.Google Scholar
Bažok, R., Igrc Barčić, J., Kos, T., Gotlin Čuljak, T., Šilović, M., Jelovčan, S. & Kozina, A. (2009) Monitoring and efficacy of selected insecticides for European corn borer (Ostrinia nubilalis Hubn. Lepidoptera: Crambidae) control. Journal of Pest Science 82(3), 311319.Google Scholar
Bažok, R., Buketa, M., Lopatko, D. & Likar, K. (2012) Past and present sugar beet pest management practice. Glasilo biljne zaštite 12(5), 414428.Google Scholar
Bogdanov, V. (1961) Vzmožnosti za borba s obiknovanija cveklov hobotnik (Bothynoderes punctiventris Germ.) s pomošćta na parazitnata gba Beauveria bassiana Vuill. Rastitelna zašćita 4, 6471.Google Scholar
Bogdanov, V. (1965) Zavisimost meždu temperaturnoj, intenzivnostju pitanija I količestvom otloženih jaic u obilknovenavo (Bothynoderes punctiventris Germ.) I černavo (Psalidium maxillosum F.) sveklovičnih dolgonosikov. Hemizacija poljoprivrede 9/12.Google Scholar
Bogunović, M. (1987) Primjena snimka u pedologiji. Bilten za daljinska istraživanja i fotointerpretaciju 1(8), 3743.Google Scholar
Bogunović, M., Vidaček, Ž., Racz, Z., Husnjak, S. & Sraka, M. (1996) Namjenska pedološka karta 1:300000. Department of pedology, Faculty of Agriculture, University of Zagreb.Google Scholar
Bulmer, M. G. (1983) Models for the evolution of protandry in insects. Theoretical Population Biology 23(3), 314322.Google Scholar
Čačija, M. (2015) Distribution and dominance of species of the genus Agriotes in arable land in the continental Croatia. Doctoral thesis, University of Zagreb, Faculty of Agriculture, 157.Google Scholar
Čamprag, D. (1963) Prognoza pojave repine pipe. Poljoprivrednik 357, Novi Sad.Google Scholar
Čamprag, D. (1973) Štetočine šećerne repe. Poljoprivredni fakultet Novi Sad. Novi Sad.Google Scholar
Čamprag, D. (1984) Repina pipa (Bothynoderes punctiventris Germ.) i njeno suzbijanje. Nolit, Beograd, 242.Google Scholar
Drmić, Z., Tóth, M., Lemić, D., Grubišić, D., Pospišil, M. & Bažok, R. (2017). Area-wide mass trapping by pheromone-based attractants for the control of sugar beet weevil (Bothynoderes punctiventris Germar, Coleoptera: Curculionidae). Pest Management Science 73(10), 21742183.Google Scholar
EPPO, 2018. Global Database-European and Mediterranean Plant ProtectionOrganization. Present situation of Bothynoderes punctiventris in Europe, Available online at https://gd.eppo.int/taxon/CLEOPU/distribution (accessed 25 July 2018).Google Scholar
Igrc Barčić, J., Bažok, R. & Maceljski, M. (2003) Research on the Western corn rootworm (Diabrotica virgifera virgifera LeConte, Coleoptera Chrysomelidae) in Croatia (1994-2003). Entomologia Croatica 7(1–2), 6283.Google Scholar
Junk, J., Eickermann, K., Görgen, K., Beyer, M. & Hoffmann, L. (2012) Ensemble-based analysis of regional climate change effects on the cabbage stem weevil (Ceutorhynchus pallidactylus (Mrsh.) in winter oilseed rape (Brassica napus L.). Journal of Agricultural Science 150, 191202.Google Scholar
Kocmánková, E., Trnka, M., Eitzinger, J., Dubrovský, M., Štĕpánek, P., Semerádová, D., Balek, J., Skalák, P., Farda, A., Juroch, J. & Žalud, Z. (2011) Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: a novel approach. Journal of Agricultural Science 149, 185195.Google Scholar
Kovačević, Ž. (1929) Über die wichtigsten Schädlinge der Kulturplanzen in Slawonien und Bačka. Berlin, Verhandlungen der Deutsches Gesellschaft für Angewandte Entomology.Google Scholar
Kovačević, Ž. (1961) Primjenjena entomologija. II knjiga. Poljoprivredni štetnici. Poljoprivredni nakladni zavod. Zagreb, 15–119.Google Scholar
Maceljski, M. (2002) Poljoprivredna entomologija. Zrinski, Čakovec, 464.Google Scholar
Manninger, G. A. (1967) Zur Prognose der Zuckerrüben-Großschädlinge in Ungarn1. Zeitschrift für Angewandte Entomologie 59(1–4), 231238.Google Scholar
Manolache, F. & Moklova, I. (1961) The action of BHC preparations on the root structure of beet. Lucr Stiint. Inst. Agron. N. Balcescu A5, 93100.Google Scholar
Meier, U., Bachmann, L., Buhtz, E., Hack, H., Klose, R., Märländer, B., Stauss, R. & Weber, E. (1993) Phänologische Entwicklungsstadien der Beta-Rüben (Beta vulgaris L. ssp.). Codierung und Beschreibung nach der erweiterten BBCH-Skala mit Abbildungen. Nachrichtenbl. Deut. Pflanzenschutzd. 45(2), 3741.Google Scholar
Muska, F. & Krejcar, Z. (2009) Škodlivé výskyty rýhonosce řepného na cukrové a krmné řepě na území České republiky (damaging presence of beetroot weevil on sugar beet and fodder beet in the Czech Republic – historical summary until 2005). Listy Cukrovarnické a Řepařské 125(11–12), 348350.Google Scholar
Musolin, D. E. (2007) Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Global Change Biology 13, 15651585.Google Scholar
Penzar, I. & Penzar, B. (2000) Agrometeorologija. Školska knjiga, Zagreb, 222.Google Scholar
Petruha, O.I. (1959) Sveklovodstvo. Cast pervaja, vrediteli saharnoj svekli i meri borbi s nimi. Kiev: VNIS, Tom III.Google Scholar
Petruha, O. I. (1971) Principal results of the pest investigation on sugar beet in zones of country and scientific tasks for the next years. In: Zashchita rastenii sakharnoi svekly i drugikh kul.tur ot vreditelei (Plant protection of sugar beet and other cultures from pests volume 3, 24).Google Scholar
Pintér, L. (1953) A lisztes répabarkó (Bothynoderes punctiventris Germ.) veszélyességi létszáma. Növénytermelés 2(1/2), 6383.Google Scholar
Pyatnitzkiï, G. (1940) New methods of mechanical and chemical control measures against the Beet Weevil. Bulletin Of The Plant Protection Service Japan 1–2, 4246.Google Scholar
Radin, Ž. (1982) Praćenje brojnosti repine pipe u području Sombora kao osnove za racionalno suzbijanje i rezultati ispitivanja efikasnosti nekih novih insekticida. Jugos. Savetovanje o primeni pesticide, Opatija, 1981, Zbornik radova 143–147.Google Scholar
Rozsypal, J. (1930) The Sugar-beet Pest, Bothynoderes punctiventris Germ., and its natural Enemies. Bull. Ecole sup. Agron. Brno. (C16).Google Scholar
Sekulić, R., Kereši, T. & Radonjić, K. (2005) Some economically important pests of sugar beet and corn condition, prognosis and potential control. Ratarstvo i Povrtarstvo 41, 521531.Google Scholar
Sivčev, I., Tóth, M., Tomašev, I. & Ujváry, I. (2006) Effectiveness of different trap design in mass trapping of Bothynoderes punctiventris Germar. Proceedings for Natural Sciences, Matica Srpska Novi Sad 110, 205212.Google Scholar
Steiner, P. (1936) Beiträge zur Kenntnis der Schädlingfauna Kleinasiens IV. Bothynoderes punctiventris Germ. Als Zuckerrübenschädling in der Türkei. Zeitschrift für Angewandte Entomologie XXII(3), 339369.Google Scholar
Tielecke, H. (1952) Biologie, epidemiologie und Bekämfung des Rübenderbrüsslers (Bothynoderes punctiventris Germ.). Beiträge zur entomologie, band 2, NR 2/3, 256–315, 112.Google Scholar
Tóth, M., Sivčev, I., Tomašev, I., Szarukan, I., Imrei, Z. & Ujváry, I. (2002) Development of a novel attractant trap for the sugar-beet weevil (Bothynoderes punctiventris Germar.) (Coleoptera, Curculionidae). Növényvédelem 38(3), 145151.Google Scholar
Vasilj, Đ. (2000) Biometrika i eksperimentiranje i bilinogojstvu. Croatien Society of Agronomy, Zagreb, pp. 81120.Google Scholar
Wilson, L. & Barnett, W. (1983) Degree-days: an aid in crop and pest management. CaliforniaAgriculture 37(1), 47.Google Scholar