Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-03T02:28:31.080Z Has data issue: false hasContentIssue false

The persistent Toxicity under standardised field Conditions of Pyrethrum, DDT and “Gammexane” against Pests of stored Food

Published online by Cambridge University Press:  10 July 2009

Extract

The persistent toxicity of films of pyrethrum in P31 oil may endure on suitable surfaces under warehouse conditions for much longer periods than hitherto supposed, but unexplained fluctuations in toxicity may occur.

Within the range 0·8 per cent. to 1·3 per cent. total pyrethrins, the pyrethrum content appears to be only a minor factor in determining the persistent toxicity of such films.

The nature of the surface sprayed is of great importance in determining the persistent toxicity of pyrethrum films in P31 oil, which is negligible on concrete and increases steadily through the following list of surfaces—brick, heavy hessian, light hessian, jute, cotton, and wood; the last-mentioned two being particularly good substrates.

Residual deposits of DDT or “ Gammexane ” derived from kerosene sprays are of little use on concrete, but appear otherwise little affected by the nature of the surface treated; they give a uniform degree of persistent toxicity on the various surfaces listed.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1949

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, S. (1945). Bull. ent. Res., 36, pp. 273282.CrossRefGoogle Scholar
Cotton, R. T., Frankenfeld, J. C., Walkden, H. H & Schwitgzebel, R. B. (1945). U.S. Dep. Agric., Bur. Ent., E-641.Google Scholar
Davis, J. J. (1946). J. econ. Ent., 39, pp. 5961.CrossRefGoogle Scholar
Hewlett, P. S. & Parkin, E. A. (1945). Nature, 155, pp. 755756.CrossRefGoogle Scholar
Hewlett, P. S. & Parkin, E. A.. (1947). Ann. appl. Biol., 34, pp. 224232.CrossRefGoogle Scholar
Jones, B. M. (1947). Bull. ent. Res., 38, pp. 347352.CrossRefGoogle Scholar
Lindquist, A. W., Jones, H. A. & Madden, A. H. (1945). J. econ. Ent., 39, pp. 155159.Google Scholar
Madden, A. H., Lindquist, A. W. & Knipling, E. F. (1944). J. econ. Ent., 37, pp. 127128.CrossRefGoogle Scholar
Nel, R. G. & Mathew, G. E. A. (1944). Sci. Bull. Dep. Agric. For. S. Afr., no. 239.Google Scholar
Parkin, E. A. & Green, A. A. (1945). Nature, 155, p. 668.CrossRefGoogle Scholar
Parkin, E. A. & Hewlett, P. S. (1946). Ann. appl. Biol., 33, pp. 381386.CrossRefGoogle Scholar
Potter, C. (1935). Ann. appl. Biol., 22, pp. 769805.CrossRefGoogle Scholar
Potter, C. (1938). Ann. appl. Biol., 25, pp. 836854.CrossRefGoogle Scholar
Robinson, G. G. (1943). Bull. ent. Res., 34, pp. 269277.CrossRefGoogle Scholar
Slade, R. E. (1945). Chem. Trade, 116, pp. 279281.Google Scholar
Swingle, M. C. & Mayer, E. L. (1944). J. econ. Ent., 37, pp. 141142.CrossRefGoogle Scholar
Tattersfield, F. (1932). J. agric. Sci., 22, pp. 396417.CrossRefGoogle Scholar