Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T19:03:33.552Z Has data issue: false hasContentIssue false

Oviposition preferences of the mosquito Aedes aegypti Linnaeus, 1762 (Culicidae): an urban environment bioassay

Published online by Cambridge University Press:  19 June 2019

N. Kroth
Affiliation:
Universidade Comunitária da Região de Chapecó – Programa de Pós Graduação em Ciências Ambientais – Laboratório de Entomologia Ecológica, Chapecó, SC, Brazil
G.D. Cozzer
Affiliation:
Universidade Comunitária da Região de Chapecó – Curso de Graduação em Ciências Biológicas, Chapecó, SC, Brazil
G. de Carvalho
Affiliation:
Universidade Comunitária da Região de Chapecó – Curso de Graduação em Ciências Biológicas, Chapecó, SC, Brazil
A.S. Cassol
Affiliation:
Universidade Comunitária da Região de Chapecó – Programa de Pós Graduação em Ciências Ambientais – Laboratório de Entomologia Ecológica, Chapecó, SC, Brazil
J. Breaux
Affiliation:
New Orleans Mosquito, Termite and Rodent Control Board, 2100 Leon C. Simon Dr – New Orleans, LA 70122, USA
J.A. Lutinski
Affiliation:
Universidade Comunitária da Região de Chapecó – Programa de Pós Graduação em Ciências da Saúde, Chapecó, SC, Brazil
M.A. Busato
Affiliation:
Universidade Comunitária da Região de Chapecó – Programa de Pós Graduação em Ciências da Saúde, Chapecó, SC, Brazil
W.A. Roman Junior
Affiliation:
Universidade Comunitária da Região de Chapecó – Programa de Pós Graduação em Ciências da Saúde, Chapecó, SC, Brazil
José Junior dos Santos
Affiliation:
Universidade Comunitária da Região de Chapecó – Curso de Graduação em Ciências Biológicas, Chapecó, SC, Brazil
D. Albeny-Simões*
Affiliation:
Universidade Comunitária da Região de Chapecó – Programa de Pós Graduação em Ciências Ambientais – Laboratório de Entomologia Ecológica, Chapecó, SC, Brazil Universidade Comunitária da Região de Chapecó – Curso de Graduação em Ciências Biológicas, Chapecó, SC, Brazil
*
*Author for correspondence Phone: 55 49 3321-8016 Fax: 55 49 3321-8220 E-mail: [email protected]

Abstract

The establishment of an invasive species depends on reproductive success and dispersion capability in the new environment. One of the striking examples of invasion in urban environments is the mosquito Aedes aegypti Linnaeus, 1762 (Culicidae). The success of this species is primarily attributed to its ability to colonize urban environments, and some of the important adaptive strategies associated with this ability is the preference for humans as a blood source and intense occupation of residential (indoor) environments. This study evaluated the effects of location (indoor vs. outdoor) and water nutrient level (% organic matter) on the oviposition preference of A. aegypti in an urban environment. We used oviposition choice experiments to evaluate mosquito oviposition in containers holding 1:1 vs 1:0 ratios of water: organic matter placed indoors and outdoors. Eggs were sampled once per week for nine weeks. Our results revealed a strong oviposition preference for outdoor containers, with a significant preference for containers with higher concentrations of organic matter during the fifth to ninth weeks. However, mosquitoes occupying indoor environments did not prefer to lay eggs in containers with lower levels of organic matter. A better understanding of the preferences of A. aegypti regarding the nutrient level and location of oviposition containers can increase our understanding of the behavioral factors allowing mosquitoes to utilize anthropogenic environments.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albeny-Simões, D., Murrell, E.G., Elliot, S.L., Andrade, M.R., Lima, E., Juliano, S.A. & Vilela, E.F. (2014) Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics. Oecologia 175, 481492.Google Scholar
Bentley, M.D. & Day, J.F. (1989) Chemical ecology and behavioral aspects of mosquito oviposition. Annual Review of Entomology 34, 401421.Google Scholar
Bentley, M.D., McDaniel, I.N., Lee, H.P., Stiehl, B. & Yatagai, M. (1976) Studies of Aedes triseriatus ovipositions attractants produced by larvae of Aedes triseriatus and Aedes atropalmus (Diptera, Culicidae). Journal of Medical Entomology 13, 112115.Google Scholar
Brown, J.E., Evans, B.R., Zheng, W., Obas, V., Barrera-Martinez, L., Egizi, A., Zhao, H., Caccone, A. & Powell, J.R. (2014) Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito Evolution. Wiley Online Library 68, 514525.Google Scholar
Carrieri, M., Bacchi, M., Bellini, R. & Maini, S. (2003) On the competition occurring between Aedes albopictus and Culex pipiens (diptera: Culicidae) in Italy. Environmental Entomology 32, 13131321.Google Scholar
Cogliatti-Carvalho, L., Rocha-Pessôa, T.C., Nunes-Freitas, A.F. & Rocha, C.F.D. (2010) Volume de água armazenado no tanque de bromélias, em restingas da costa brasileira. Acta Botânica Brasileira 24, 8495.Google Scholar
Colton, Y.M., Chadee, D.D. & Severson, D.W. (2003) Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Medical and Veterinary Entomology 17, 195204.Google Scholar
Costanzo, K., Mormann, K. & Juliano, S. (2005) Asymmetrical competition and patterns of abundance of Aedes albopictus and Culex pipiens (diptera: Culicidae). Journal of Medical Entomology 42, 559.Google Scholar
Crawley, M.J. (1993) GLIM for Ecologists. Blackwell Scientific Publications, Oxford.Google Scholar
Eitam, A., Blaustein, L. & Mangel, M. (2002) Effects of Anisops sardea (Hemiptera: No- tonectidae) on oviposition habitat selection by mosquitoes and other dipterans and on community structure in artificial pools. Hydrobiologia 485, 183189.Google Scholar
Forattini, O.P. & Brito, M. (2003) Reservatórios domiciliares de água e controle do Aedes aegypti. Revista de Saúde Pública 37, 676677.Google Scholar
Hufbauer, R., Facon, B., Ravigne, V., Turgeon, J., Foucaud, J., Lee, C., Rey, O. & Estoup, A. (2012) Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evolutionary Applications 5, 89101.Google Scholar
Jackson, R.R., Nelson, X.J. & Sune, G.O. (2005) A spider that feeds indirectly on vertebrate blood by choosing female mosquitoes as prey. Proceedings of the National Academy of Sciences of the United States of America 102, 1515515160.Google Scholar
Juliano, S. (2009) Species interactions among larval mosquitoes: context dependence across habitat gradients. Annual Review of Entomology 54, 3756.Google Scholar
Juliano, S.A. & Lounibos, L.P. (2016) 14 invasions by mosquitoes: the roles of behaviour across the life cycle. Biological Invasions and Animal Behaviour 245, 221244.Google Scholar
Juliano, S., Lounibos, L. & O'Meara, G. (2004) A field test for competitive effects of Aedes albopictus on A. aegypti in south Florida: differences between sites of coexistence and exclusion? Oecologia 139, 583593.Google Scholar
Kramer, W. & Mulla, M. (1979) Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environmental Entomology 8, 11111117.Google Scholar
Leahy, S.M., Vandehey, R. & Booth, K. (1978) Differential response to oviposition site by feral and domestic populations of Aedes aegypti (diptera: Culicidae). Bulletin of Entomological Research 68, 455463.Google Scholar
Lima-Camara, T.N.D., Honório, N.A. & Oliveira, R.L. (2006) Frequency and spatial distribution of Aedes aegypti and Aedes albopictus (diptera, culicidae) in Rio de Janeiro, Brazil. Cadernos de Saúde Pública 22, 20792084.Google Scholar
Lima-Camara, T.N., Urbinatti, P.R. & Chiaravalloti-Neto, F. (2016) Encontro de aedes aegypti em criadouro natural de área urbana, São Paulo, SP, Brasil. Revista de Saúde Pública 50, 14.Google Scholar
Lounibos, L.P. (2002) Invasions by insect vectors of human disease. Annual Review of Entomology 47, 233266.Google Scholar
McBride, C.S., Baier, F., Omondi, A.B., Spitzer, S.A., Lutomiah, J., Sang, R., Ignell, R. & Vosshall, L.B. (2014) Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222227.Google Scholar
Ponnusamy, L., Xu, N., Nojima, S., Wesson, D.M., Schal, C. & Apperson, C.S. (2008) Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America 105, 92629267.Google Scholar
Ponnusamy, L., Wesson, D.M., Arellano, C., Schal, C. & Apperson, C.S. (2010) Species composition of bacterial communities influences attraction of mosquitoes to experimental plant infusions. Microbial Ecology 59, 158173.Google Scholar
Powell, J.R. & Tabachnick, W.J. (2013) History of domestication and spread of Aedes aegypti a review. Memorias do Instituto Oswaldo Cruz 108, 1117.Google Scholar
R Development Core Team R (2014) R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
Sant'ana, A.L., Roque, R.A. & Eiras, A.E. (2006) Characteristics of grass infusions as oviposition attractants to Aedes (Stegomyia) (Diptera: Culicidae). Journal of Medical Entomology 43, 214220.Google Scholar
Scott, T.W., Morrison, A.C., Lorenz, L.H., Clark, G.G., Strickman, D., Kittayapong, P., Zhou, H. & Edman, J.D. (2000) Longitudinal studies of Aedes aegypti (diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. Journal of Medical Entomology 37, 7788.Google Scholar
Silberbush, A. & Blaustein, L. (2008) Scientific Note Oviposition habitat selection by a mosquito in response to a predator: are predator-released kairomones air-borne cues? Journal of Vector Ecology 33, 208211.Google Scholar
Silberbush, A., Markman, S., Lewinsohn, E., Bar, E., Cohen, J.E. & Blaustein, L. (2010) Predator-released hydrocarbons repel oviposition by a mosquito. Ecology Letters 13, 11291138.Google Scholar
Silva, A.M. (2004) Bebedouro doméstico como criadouro de Aedes aegypti. Revista de Saúde Pública 38, 139140.Google Scholar
Tabachnick, W. & Powell, J. (1979) A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genetics Research 34, 215229.Google Scholar
Uitregt, V.O.V., Hurst, T.P. & Wilson, R.S. (2012) Reduced size and starvation resistance in adult mosquitoes, Aedes notoscriptus, exposed to predation cues as larvae. Journal of Animal Ecology 81, 108115.Google Scholar
Westby, K.M. & Juliano, S.A. (2017) The roles of history: age and prior exploitation in aquatic container habitats have immediate and carry-over effects on mosquito life history. Ecological Entomology, Wiley Online Library, 42, 704711.Google Scholar
Westphalen, A.P.C., Coração, G. & Benetti, A.D. (2016) Utilização de carvão ativado biológico para o tratamento de água para consumo humano. Engenharia sanitária e ambiental: órgão oficial de informação técnica da ABES 21, 425436.Google Scholar