Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T18:09:54.609Z Has data issue: false hasContentIssue false

Optimizing Nesidiocoris tenuis (Hemiptera: Miridae) as a biological control agent: mathematical models for predicting its development as a function of temperature

Published online by Cambridge University Press:  23 December 2015

Héctor Martínez-García
Affiliation:
Departamento de Agricultura y Alimentación, Universidad de La Rioja, C/ Madre de Dios, 53, 26006, Logroño (La Rioja), Spain
Luis R Román-Fernández
Affiliation:
Departamento de Agricultura y Alimentación, Universidad de La Rioja, C/ Madre de Dios, 53, 26006, Logroño (La Rioja), Spain
María G Sáenz-Romo
Affiliation:
Departamento de Agricultura y Alimentación, Universidad de La Rioja, C/ Madre de Dios, 53, 26006, Logroño (La Rioja), Spain
Ignacio Pérez-Moreno
Affiliation:
Departamento de Agricultura y Alimentación, Universidad de La Rioja, C/ Madre de Dios, 53, 26006, Logroño (La Rioja), Spain
Vicente S Marco-Mancebón*
Affiliation:
Departamento de Agricultura y Alimentación, Universidad de La Rioja, C/ Madre de Dios, 53, 26006, Logroño (La Rioja), Spain
*
*Author correspondence Fax: (+34) 941-299.721 Phone: (+34) 941-299.745 E-mail: [email protected]

Abstract

For optimal application of Nesidiocoris tenuis as a biological control agent, adequate field management and programmed mass rearing are essential. Mathematical models are useful tools for predicting the temperature-dependent developmental rate of the predator. In this study, the linear model and nonlinear models Logan type III, Lactin and Brière were estimated at constant temperatures and validated at alternating temperatures and under field conditions. N. tenuis achieved complete development from egg to adult at constant temperatures between 15 and 35°C with high survivorship (>80%) in the range 18–32°C. The total developmental time decreased from a maximum at 15°C (76.74 d) to a minimum at 33°C (12.67 d) and after that, increased to 35°C (13.98 d). Linear and nonlinear developmental models all had high accuracy (Ra2 >0.86). The maximum developmental rate was obtained between 31.9°C (Logan type III and Brière model for N1) and 35.6°C (for the egg stage in the Brière model). Optimal survival and the highest developmental rate fell within the range 27–30°C. The field validation revealed that the Logan type III and Lactin models offered the best predictions (95.0 and 94.5%, respectively). The data obtained on developmental time and mortality at different temperatures are useful for mass rearing this predator, and the developmental models are valuable for using N. tenuis as a biological control agent.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnó, J. & Gabarra, R. (2011) Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). Journal Pest Science 84(4), 513520.CrossRefGoogle Scholar
Arnó, J., Castañé, C., Riudavets, J., Roig, J. & Gabarra, R. (2006) Characterization of damage to tomato plants produced by the zoophytophagous predator Nesidiocoris tenuis . IOBC/WPRS Bulletin 29, 249254.Google Scholar
Arnó, J., Castañé, C., Riudavets, J. & Gabarra, R. (2010) Risk of damage to tomato crops by the generalist zoophytophagous predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae). Bulletin of Entomological Research 100, 105115.CrossRefGoogle ScholarPubMed
Beck, S.D. (1983) Insect thermoperiodism. Annual Review of Entomology 28, 91108.CrossRefGoogle Scholar
Belehrádek, J. (1935) Temperature and Living Matter. Protoplasma Monographien. Vol. 8, 277. Berlin, Gebrüder Borntraeger.Google Scholar
Brière, J., Pracros, P., Le Roux, A. & Pierre, J. (1999) A novel rate model of temperature-dependent development for arthropods. Environmental Entomology 28, 2229.CrossRefGoogle Scholar
Calvo, J. (2009) Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato. BioControl 54, 237246.CrossRefGoogle Scholar
Calvo, F.J., Bolckmans, K. & Belda, J.E. (2012) Release rate for a pre-plant application of Nesidiocoris tenuis for Bemisia tabaci control in tomato. Biocontrol 57, 809817.Google Scholar
Campbell, A., Frazer, B., Gilbert, N., Gutierrez, A. & Mackauer, M. (1974) Temperature requirements of some aphids and their parasites. Journal of Applied Ecology 11, 431438.CrossRefGoogle Scholar
Castañé, C., Arnó, J., Beitia, F. & Gabarra, R. (2008) Control biológico de moscas blancas. pp. 239253 in Jacas, J.A. & Urbaneja, A. (Eds) Control biológico de plagas agrícolas España. Madrid, M. V. Phytoma-España S.L. Google Scholar
Castañé, C., Arnó, J., Gabarra, R. & Alomar, O. (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biological Control 59(1), 2229.CrossRefGoogle Scholar
Davidson, J. (1944) On the relationship between temperature and rate of development of insects at constant temperatures. Journal of Economic Entomology 13, 2638.Google Scholar
Fan, Y. (1992) Temperature-dependent development of Mexican bean beetle (Coleoptera: Coccinellidae) under constant and variable temperatures. Journal of Economic Entomology 85, 17621770.CrossRefGoogle Scholar
Fornasari, L. (1995) Temperature effects on the embryonic development of Aphthona abdominalis (Coleoptera: Chrysomelidae), a natural enemy of Euphorbia esula (Euphorbiales: Euphorbiaceae). Environmental Entomology 24, 720723.CrossRefGoogle Scholar
García-Ruiz, E., Marco, V. & Pérez-Moreno, I. (2011) Effects of variable and constant temperatures on the embryonic development and survival of a new grape pest, Xylotrechus arvicola (Coleoptera: Cerambycidae). Environmental Entomology 40, 939947.CrossRefGoogle ScholarPubMed
Gilbert, N. & Raworth, D.A. (1996) Insects and temperature – a general theory. Canadian Entomology 128, 113.CrossRefGoogle Scholar
Hagstrum, D.W. & Milliken, G.A. (1991) Modeling differences in insect developmental times between constant and fluctuating temperatures. Annals of the Entomological Society of America 84, 369379.CrossRefGoogle Scholar
Hilbert, D.W. & Logan, J.A. (1983) Empirical model of nymphal development for the migratory grasshopper, Melanopus sanguinipes (Orthoptera, Acrididae). Environmental Entomology 12, 15.CrossRefGoogle Scholar
Hughes, G.E., Bale, J.S. & Sterk, G. (2009) Thermal biology and establishment potential in temperate climates of the predatory mirid Nesidiocoris tenuis . Biocontrol 54, 785795.CrossRefGoogle Scholar
Jafari, S., Fathipour, Y. & Faraji, F. (2012) Temperature-dependent development of Neoseiulus barkeri (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae) at seven constant temperatures. Journal Insect Science 19, 220228.CrossRefGoogle Scholar
Jalali, M.A., Tirry, L., Arbab, A. & Clercq, P.D. (2010) Temperature-dependent development of the two-spotted ladybeetle, Adalia bipunctata, on the green peach aphid, Myzus persicae, and a factitious food under constant temperatures. Journal Insect Science 10, 114.CrossRefGoogle Scholar
Jandel Scientific (1994) Tablecurve 2D User's Manual. San Rafael, CA, Jandel Co.Google Scholar
Janisch, E. (1932) The influence of temperature on the life-history of insects. Transactions of the Royal Entomological Society of London 80, 137168.CrossRefGoogle Scholar
Kim, T., Ahn, J.J. & Lee, J.H. (2013) Age- and temperature-dependent oviposition model of Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) with Tetranychus urticae as prey. Journal of Applied Entomology 137(4), 282288.CrossRefGoogle Scholar
Lactin, D.J., Holliday, N.J., Johnson, D.L. & Craigen, R. (1995) Improved rate model of temperature-dependent development by arthropods. Environmental Entomology 24, 6875.CrossRefGoogle Scholar
Lamana, M.L. & Miller, J.C. (1995) Temperature-dependent development in a polymorphic lady beetle, Calvia quatuordecimguttata (Coleoptera: Coccinellidae). Annals of the Entomological Society of America 88, 785790.CrossRefGoogle Scholar
Li, D. (1995) Development and survival of Erigonidium graminicolum (Sundevall) (Araneae: Linyphiidae: Erigoninae) at constant temperatures. Bulletin of Entomological Research 85, 7991.CrossRefGoogle Scholar
Logan, J.A. (1988) Toward an expert system for development of pest simulation models. Environmental Entomology 17, 359376.CrossRefGoogle Scholar
Logan, J., Wollkind, D., Hoyt, S. & Tanigoshi, L. (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology 5, 11331140.CrossRefGoogle Scholar
Marco, V., Taberner, A. & Castañera, P. (1997) Development and survival of immature Aubeonymus mariaefranciscae (Coleoptera: Curculionidae) at constant temperatures. Annals of the Entomological Society of America 90, 169176.CrossRefGoogle Scholar
Mironidis, G.K. & Savopoulou-Soultani, M. (2008) Development, survivorship, and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures. Environmental Entomology 37, 1628.CrossRefGoogle ScholarPubMed
Moreno-Ripoll, R., Gabarra, R., Symondson, W.O.C., King, R.A. & Agustí, N. (2012) Conspecific and heterospecific interactions between two omnivorous predators on tomato. Biological Control 62, 189196.CrossRefGoogle Scholar
Pérez-Hedo, M. & Urbaneja, A. (2014) Prospects for predatory mirid bugs as biocontrol agents of aphids in sweet peppers. Journal of Pest Science 88, 6573.CrossRefGoogle Scholar
Roy, M., Brodeur, J. & Cloutier, C. (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environmental Entomology 31, 177187.CrossRefGoogle Scholar
Sánchez, J.A. (2009) Density thresholds for Nesidiocoris tenuis (Heteroptera: Miridae) in tomato crops. Biological Control 51, 493498.CrossRefGoogle Scholar
Sánchez, J.A., Lacasa, A., Arnó, J., Castañé, C. & Alomar, O. (2009) Life history parameters for Nesidiocoris tenuis (Reuter) (Het., Miridae) under different temperature regimes. Journal of Applied Entomology 133, 125132.Google Scholar
Sharpe, P.J.H. & DeMichele, D.W. (1977) Reaction kinetics of poikilotherm development. Journal of Theoretical Biology 64, 649670.CrossRefGoogle ScholarPubMed
Smith, A.M. & Ward, S.A. (1995) Temperature effects on larval and pupal development, adult emergence, and survival of the pea weevil (Coleoptera: Chrysomelidae). Environmental Entomology 24, 623634.CrossRefGoogle Scholar
Stinner, R., Gutierrez, A. & Butler, G. (1974) An algorithm for temperature-dependent growth rate simulation. Canadian Entomology 106, 519524.CrossRefGoogle Scholar
Urbaneja, A. (2003) Influence of the prey on the biology of Nesidiocoris tenuis (Hem.: Miridae). Bulletin OILB/SROP 26, 159.Google Scholar
Urbaneja, A., Tapia, G. & Stansly, P. (2005) Influence of host plant and prey availability on developmental time and survivorship of Nesidiocoris tenius (Het.: Miridae). Biocontrol Science and Technology 15, 513518.CrossRefGoogle Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., Schoolfield, R.M. & Coulson, R.N. (1984) Modeling insect development rates: a literature review and application of a biophysical model. Annals of the Entomological Society of America 77, 208225.CrossRefGoogle Scholar