Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T06:15:28.889Z Has data issue: false hasContentIssue false

Offspring production and self-superparasitism in the solitary ectoparasitoid Spalangia cameroni (Hymenoptera: Pteromalidae) in relation to host abundance

Published online by Cambridge University Press:  31 August 2011

E.A. Böckmann*
Affiliation:
Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, D-69221 Dossenheim, Germany
J. Tormos
Affiliation:
Área de Zoología, Facultad de Biología, Universidad de Salamanca, 37071-Salamanca, Spain
F. Beitia
Affiliation:
Instituto Valenciano de Investigaciones Agrarias, Unidad Asociada de Entomología IVIA/CIB-CSIC, Apartado Oficial, 46113-Montcada, Valencia, Spain
K. Fischer
Affiliation:
Zoological Institute and Museum, University of Greifswald, D-17489 Greifswald, Germany
*
*Author for correspondence Fax: +49 (0)6221-86805-15 E-mail: [email protected]

Abstract

Parasitoid fitness strongly depends on the availability and quality of hosts, which provide all resources required for larval development. Several factors, such as host size and previous parasitation, may affect host quality. Because self-superparasitism induces competition among a female's offspring, it should only occur if there is an imperfect recognition of self-parasitized hosts or if there is a fitness advantage to self-superparasitism. Against this background, we investigated self-superparasitism and offspring production in Spalangia cameroni (Hymenoptera: Pteromalidae) in relation to the abundance of a novel host, Ceratitis capitata (Diptera: Tephritidae). Individual pairs of parasitoids were provided with either two (low host abundance) or ten (high host abundance) pupae per day. Under high host abundance, lifetime fecundity (number of eggs laid), offspring number, number of pupae parasitized and hosts killed were greater than under low host abundance, whereas the number of eggs per host was lower; and the proportion of hosts that did not produce offspring tended to be lower. The latter suggests the occurrence of ovicide, when hosts are scarce due to an at least imperfect recognition of previously self-parasitized hosts. Offspring production per parasitized pupa was higher when hosts were scarce and levels of self-superparasitism high, suggesting the existence of beneficial effects of self-superparasitism.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, M., Ahmad, M., Mishra, R. & Sheel, S. (2002) Superparasitism by Trichogramma poliae in the eggs of Clostera cupreata (Lepidoptera: Notodontidae) and its effect on offspring. Journal of Tropical Forest Science 14, 6170.Google Scholar
Bell, H.A., Marris, G.C., Prickett, A.J. & Edwards, J.P. (2005) Influence of host size on the clutch size and developmental success of the gregarious ectoparasitoid Eulophus pennicornis (Nees) (Hymenoptera: Braconidae) attacking larvae of the tomato moth Lacanobia oleracea (L.) (Lepidoptera: Noctuidae). Journal of Experimental Biology 208, 31993209.CrossRefGoogle Scholar
Birkemoe, T., Soleng, A. & Aak, A. (2009) Biological control of Musca domestica and Stomoxys calcitrans by mass releases of the parasitoid Spalangia cameroni on two Norwegian pig farms. BioControl 54, 425436.CrossRefGoogle Scholar
Boucek, Z. (1963) A taxonomic study in Spalangia Latr. (Hymenoptera: Chalcidoidea). Acta Entomologica Musei Nationalis Pragae 35, 429512.Google Scholar
Burton-Chellew, M.N., Koevoets, T., Grillenberger, B.K., Sykes, E.M., Underwood, S.L., Bijlsma, R., Gadau, J., van de Zande, L., Beukeboom, L.W., West, S.A. & Shuker, D.M. (2008) Facultative sex ratio adjustment in natural populations of wasps: cues of local mate competition and the precision of adaptation. American Naturalist 172, 393404.CrossRefGoogle ScholarPubMed
Carleton, D., Quiring, D., Heard, S., Hebert, C., Delisle, J., Berthiaume, R., Bauce, E. & Royer, L. (2010) Density-dependent and density-independent responses of three species of Telenomus parasitoids of hemlock looper eggs. Entomologia Experimentalis et Applicata 137, 296303.CrossRefGoogle Scholar
Caron, V., Myers, J.H. & Gillespie, D.R. (2010) The failure to discriminate: superparasitism of Trichoplusia ni Hubner by a generalist tachinid parasitoid. Bulleting of Entomological Research 100, 255261.CrossRefGoogle ScholarPubMed
Charnov, E.L. & Skinner, S.W. (1984) Evolution of host selection and clutch size in parasitoid wasps. Florida Entomologist 67, 521.CrossRefGoogle Scholar
Collier, T.R., Hunter, M.S. & Kelly, S.E. (2007) Heterospecific ovicide influences the outcome of competition between two endoparasitoids, Encarsia formosa and Encarsia luteola. Ecological Entomology 32, 7075.CrossRefGoogle Scholar
Dannon, E.A., Tamo, M., van Huis, A. & Dicke, M. (2010) Functional response and life history parameters of Apanteles taragamae, a larval parasitoid of Maruca vitrata. BioControl 55, 363378.CrossRefGoogle Scholar
Desneux, N., Barta, R.J., Delebecque, C.J. & Heimpel, G.E. (2009) Transient host paralysis as a means of reducing self-superparasitism in koinobiont endoparasitoids. Journal of Insect Physiology 55, 321327.CrossRefGoogle ScholarPubMed
Falcó, J.V., Verdú, M.J. & Beitia, F. (2004) Spalangia cameroni (Hymenoptera, Pteromalidae), un nuevo parasitoide en España de Ceratitis capitata (Diptera, Tephritidae). p. 155 in XI Congresso Iberico de Entomologia. 13–17 September 2004, Funchal, Madeira, Portugal.Google Scholar
Fimiani, P. (1989) Mediterranean region. pp. 3751 in , Robinson, , A.S. & Hooper, G. (Eds) Fruit Flies; Their Biology, Natural Enemies, and Control. Amsterdam, Netherlands, Elsevier.Google Scholar
Fletcher, B.S. (1989) Life history strategies of Tephritid fruit flies. pp. 195209 in Robinson, A.S. & Hooper, G. (Eds) Fruit Flies; Their Biology, Natural Enemies, and Control. Amsterdam, Netherlands, Elsevier.Google Scholar
Gerling, D. & Legner, E.F. (1968) Developmental history and reproduction of Spalangia cameroni, parasite of synanthropic flies. Annals of the Entomological Society of America 61, 14361443.CrossRefGoogle Scholar
Godfray, H.C.J. (1994) Parasitoids: Behavioral and Evolutionary Ecology. Princeton, NJ, USA, Princeton University Press.CrossRefGoogle Scholar
Gu, H.N., Wang, Q. & Dorn, S. (2003) Superparasitism in Cotesia glomerata: response of hosts and consequences for parasitoids. Ecological Entomology 28, 422431.CrossRefGoogle Scholar
Hardy, I.C.W., Griffiths, N.T. & Godfray, H.C.J. (1992) Clutch size in a parasitoid wasp – a manipulation experiment. Journal of Animal Ecology 61, 121129.CrossRefGoogle Scholar
Hassel, M.P. (2000) The Spatial and Temporal Dynamics of Host-parasitoid Interactions. New York, USA, Oxford University Press.CrossRefGoogle Scholar
He, X., Teulonz, D. & Wang, Q. (2006) Oviposition strategy of Aphidius ervi (Hymenoptera: Aphidiidae) in response to host density. New Zealand Plant Protection 59, 190194.CrossRefGoogle Scholar
Heimpel, G.E. & Collier, T.R. (1996) The evolution of host-feeding behaviour in insect parasitoids. Biological Reviews of the Cambridge Philosophical Society 71, 373400.CrossRefGoogle Scholar
Hubbard, S.F., Marris, G., Reynolds, A. & Rowe, G.W. (1987) Adaptive patterns in the avoidance of superparasitism by solitary parasitic wasps. Journal of Animal Ecology 56, 387401.CrossRefGoogle Scholar
Hubbard, S.F., Harvey, I.F. & Fletcher, J.P. (1999) Avoidance of superparasitism: a matter of learning? Animal Behaviour 57, 11931197.CrossRefGoogle ScholarPubMed
Hughes, R.N. (1979) Optimal diets under the energy maximization principle: the effects of recognition time and learning. American Naturalist 113, 209221.CrossRefGoogle Scholar
Ito, E. & Yamada, Y.Y. (2005) Profitable self-superparasitism in an infanticidal parasitoid when conspecifics are present: self-superparasitism deters later attackers from probing for infanticide. Ecological Entomology 30, 714723.CrossRefGoogle Scholar
Keasar, T., Segoli, M., Barak, R., Steinberg, S., Giron, D., Strand, M.R., Bouskila, A. & Harari, A.R. (2006) Costs and consequences of superparasitism in the polyembryonic parasitoid Copidosoma koehleri (Hymenoptera: Encyrtidae). Ecological Entomology 31, 277283.CrossRefGoogle Scholar
King, B.H. (1989) A test of the local mate competition theory with a solitary species of parasitoid wasp, Spalangia cameroni. Oikos 54, 5054.CrossRefGoogle Scholar
King, B.H. (1998) Host age response in the parasitoid wasp Spalangia cameroni (Hymenoptera: Pteromalidae). Journal of Insect Behavior 11, 103117.CrossRefGoogle Scholar
King, B.H. (2000) Sperm depletion and mating behavior in the parasitoid wasp Spalangia cameroni (Hymenoptera: Pteromalidae). The Great Lakes Entomologist 33, 117127.Google Scholar
King, B.H. (2002) Offspring sex ratio and number in response to proportion of host sizes and ages in the parasitoid wasp Spalangia cameroni (Hymenoptera: Pteromalidae). Environmental Entomology 31, 505508.CrossRefGoogle Scholar
King, B.H. & King, R.B. (1994) Sex ratio manipulation in response to host size in the parasitoid wasp Spalangia cameroni – is it adaptive? Behavioral Ecology 5, 448454.CrossRefGoogle Scholar
Legner, E.F. (1969) Adult emergence interval and reproduction in parasitic hymenoptera influenced by host size and density. Annals of the Entomological Society of America 62, 220226.CrossRefGoogle Scholar
Legner, E.F. & Gerling, D. (1967) Host-feeding and oviposition on Musca domestica by Spalangia cameroni, Nasonia vitripennis, and Muscidifurax raptor (Hymenoptera: Pteromalidae) influences their longevity and fecundity. Annals of the Entomological Society of America 60, 678691.CrossRefGoogle ScholarPubMed
Liquido, N.J., Shinoda, L.A. & Cunningham, R.T. (1991) Host plants of the Mediterranean fruit fly: an annotated world review. Annals of the Entomological Society of America 77, 152.Google Scholar
Mackauer, M. & Chau, A. (2001) Adaptive self superparasitism in a solitary parasitoid wasp: the influence of clutch size on offspring size. Functional Ecology 15, 335343.CrossRefGoogle Scholar
Mahmoudi, M., Sahragard, A. & Sendi, J.J. (2010) Effects of age and host availability on reproduction of Trioxys angelicae Haliday (Hymenoptera: Braconidae) parasitizing Aphis fabae Scopoli (Hemiptera: Aphididae). Journal of Pest Science 83, 3339.CrossRefGoogle Scholar
Montoya, P., Liedo, P., Benrey, B., Barrera, J.F., Cancino, J. & Aluja, M. (2000) Functional response and superparasitism by Diachasmimorpha longicaudata (Hymenoptera: Braconidae), a parasitoid of fruit flies (Diptera: Tephritidae). Annals of the Entomological Society of America 93, 4754.CrossRefGoogle Scholar
Montoya, P., Benrey, B., Barrera, J.F., Zenil, M., Ruiz, L. & Liedo, P. (2003) Oviposition Behavior and conspecific host discrimination in Diachasmimorpha longicaudata (Hymenoptera: Braconidae), a fruit fly parasitoid. Biocontrol Science and Technology 13, 683690.CrossRefGoogle Scholar
Moon, R.D., Berry, I.L. & Peterson, J.J. (1982) Reproduction of Spalangia cameroni Perkins (Hymenoptera: Pteromalidae) on stable fly (Diptera: Muscidae) in the laboratory. Journal of the Kansas Entomological Society 55, 7785.Google Scholar
Muñiz, M. & Gil, A. (1984) Desarollo y reproducion de Ceratitis capitata Wied. en condiciones artificiales. Boletin Servicio de Defesa contra plagas y Inspecion fitopatologica; Fuera de serie, n.2., p. 140.Google Scholar
Peters, R.S. (2010) Host range and offspring quantities in natural populations of Nasonia vitripennis (Walker, 1836) (Hymenoptera: Chalcidoidea: Pteromalidae). Journal of Hymenoptera Research 19, 128138.Google Scholar
Pérez-Hinarejos, M. & Beitia, F. (2008) Parasitism of Spalangia cameroni (Hymenoptera, Pteromalidae), an idiobiont parasitoid on pupae of Ceratitis capitata (Diptera, Tephritidae). IOBC/WPRS Bulletin 38, 130133.Google Scholar
Quezada, J.R., Debach, P. & Rosen, D. (1973) Biological and taxonomic studies of Signiphora-Borinquensis, new species, (Hymenoptera: Signiphoridae), a primary parasite of diaspine scales. Hilgardian 41, 543576.CrossRefGoogle Scholar
Richard, R. & Casas, J. (2009) Stochasticity and controllability of nutrient sources in foraging: host-feeding and egg resorption in parasitoids. Ecological Monographs 79, 465483.CrossRefGoogle Scholar
Rivers, D.B. (2004) Evaluation of host responses to envenomation as a means to assess ectoparasitic pteromalid wasp's potential for controlling manure-breeding flies. Biological Control 30, 181192.CrossRefGoogle Scholar
Rosenheim, J.A. & Hongkham, D. (1996) Clutch size in an obligately siblicidal parasitoid wasp. Animal Behaviour 51, 841852.CrossRefGoogle Scholar
Roitberg, B.D. & Mangel, M. (1988) On the evolutionary ecology of marking pheromones. Evolutionary Ecology 2, 289315.CrossRefGoogle Scholar
Rosenheim, J.A. & Mangel, M. (1994) Patch-leaving rules for parasitoids with imperfect host discrimination. Ecological Entomology 19, 374380.CrossRefGoogle Scholar
Rosenheim, J.A., Heimpel, G.E. & Mangel, M. (2000) Egg maturation, egg resorbtion, and the costlines of transient egg limitation in insects. Proceedings of the Royal Society of London, Series B 267, 15651573.CrossRefGoogle Scholar
Shi, S., Zang, L., Liu, T., Ruan, C. & Sun, G. (2009) Host-feeding behaviors of parasitoids on hosts and implications for biological control. Acta Entomologica Sinica 52, 424433.Google Scholar
Silva-Torres, C., Ramos Filho, I., Torres, J. & Barros, R. (2009) Superparasitism and host size effects in Oomyzus sokolowskii, a parasitoid of diamondback moth. Entomologia Experimentalis et Applicata 133, 6573.CrossRefGoogle Scholar
Silva-Torres, C.S. & Matthews, R.W. (2003) Development of Melittobia australica Girault and M. digitata Dahms (Parker) (Hymenoptera: Eulophidae) parasitizing Neobellieria bullata (Parker) (Diptera: Sarcophagidae) puparia. Neotropical Entomology 32, 645651.CrossRefGoogle Scholar
Sirot, E., Ploye, H. & Bernstein, C. (1997) State dependent superparasitism in a solitary parasitoid: egg load and survival. Behavioral Ecology 8, 226232.CrossRefGoogle Scholar
Skovgard, H. & Nachman, G. (2004) Biological control of house flies Musca domestica and stable flies Stomoxys calcitrans (Diptera: Muscidae) by means of inundative releases of Spalangia cameroni (Hymenoptera: Pteromalidae). Bulletin of Entomological Research 94, 555567.CrossRefGoogle ScholarPubMed
Sousa, J.M. & Spence, J.R. (2000) Effects of mating status and parasitoid density on superparasitism and offspring fitness in Tiphodytes gerriphagus (Hymenoptera: Scelionidae). Annals of the Entomological Society of America 93, 548553.CrossRefGoogle Scholar
Tormos, J., Beitia, F., Böckmann, E.A. & Asis, J.D. (2009) The preimaginal stages and development of Spalangia cameroni Perkins (Hymenoptera: Pteromalidae) on Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Micron 40, 646658.CrossRefGoogle ScholarPubMed
Tormos, J., Beitia, F., Alonso, M., Asís, J.D. & Gayubo, S. (2010) Assessment of Ceratitis capitata (Diptera, Tephritidae) pupae killed by heat or cold as hosts for rearing Spalangia cameroni (Hymenoptera: Pteromalidae). Annals of Applied Biology 156, 179185.CrossRefGoogle Scholar
Ueno, T. & Tanaka, T. (1994) Can a female parasitoid recognize a previously rejected host. Animal Behaviour 47, 988990.CrossRefGoogle Scholar
van Alphen, J.J. & Visser, M.E. (1990) Superparasitism as an adaptive strategy for insect parasitoids. Annual Review of Entomology 35, 5979.CrossRefGoogle ScholarPubMed
van Lenteren, J.C. (1976) The development of host discrimination and the prevention of superparasitism in the parasite Pseudocoila bochei Weld (Hym.: Cynipidae). Netherlands Journal of Zoology 26, 183.CrossRefGoogle Scholar
Vet, L., Datema, A., Janssen, A. & Snellen, H. (1994) The relation between clutch size and fitness in a larval-pupal endoparasitoid. Norwegian Journal of Agricultural Sciences 16, 141145.Google Scholar
Visser, M.E. (1993) Adaptive self- and conspecific superparasitism in the solitary parasitoid Leptopilina heteroma (Hymenoptera: Eucoilidae). Behavioral Ecology 4, 2228.CrossRefGoogle Scholar
Weems, H.V. (1981) Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Florida Department of Agriculture and Consumer Services Division of Plant Industry. Entomology Circular 230, 18.Google Scholar
Weisser, W.W. & Houston, A.I. (1993) Host discrimination in parasitic wasps – when is it advantageous. Functional Ecology 7, 2739.CrossRefGoogle Scholar
Wylie, H.G. (1972) Oviposition restraint of Spalangia cameroni (Hymenoptera: Pteromalidae) on parasitised housefly pupae. Canadian Entomologist 104, 209214.CrossRefGoogle Scholar
Yamada, Y.Y. & Kitashiro, S. (2002) Infanticide in a dryinid parasitoid, Haplogonatopus atratus. Journal of Insect Behavior 15, 415427.CrossRefGoogle Scholar
Yamada, Y.Y. & Miyamoto, K. (1998) Payoff from self and conspecific superparasitism in a dryinid parasitoid, Haplogonatopus atratus. Oikos 81, 209216.CrossRefGoogle Scholar
Zang, L.S. & Liu, T.X. (2010) Effects of food deprivation on host feeding and parasitism of whitefly parasitoids. Environmental Entomology 39, 912918.CrossRefGoogle ScholarPubMed
Zaviezo, T. & Mills, N. (2000) Factors influencing the evolution of clutch size in a gregarious insect parasitoid. Journal of Animal Ecology 69, 10471057.CrossRefGoogle Scholar