Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T05:42:06.791Z Has data issue: false hasContentIssue false

A migration of grasshoppers, particularly Diabolocatantops axillaris (Thunberg) (Orthoptera: Acrididae), in the West African Sahel

Published online by Cambridge University Press:  10 July 2009

D. R. Reynolds
Affiliation:
Tropical Development and Research Institute, Radar Entomology Unit, Royal Signals & Radar Establishment, Malvern, Worcs., WR14 ILL, UK
J. R. Riley
Affiliation:
Tropical Development and Research Institute, Radar Entomology Unit, Royal Signals & Radar Establishment, Malvern, Worcs., WR14 ILL, UK

Abstract

A dense layer of large insects in windborne, migratory flight was observed by radar in the Tilemsi Valley in Mali between about 23.00 and 02.00 h on 10–11 October 1978. The volume density, height of flight, area density, displacement speed and direction, orientation and migration rate were determined for the overflying insects. Light-trap catches and radar signatures provided strong evidence that the pest grasshopper Diabolocatantops axillaris (Thunberg) contributed to the overflying layer. Other species contributing probably included Oedaleus senegalensis (Krauss) and possibly Ochrilidia spp. For D. axillaris, the migration can be regarded as a search for overwintering sites by adults in reproductive diapause, and thus is an example of C. G. Johnson's Class III migration. Estimated trajectories placed the probable source areas of the overflying grasshoppers in the Gourma, about 150 km west-south-west of the radar site. Migration direction was approximately downwind, but the grasshoppers showed a degree of common orientation towards the east-south-east, which added a southwards component to their displacement. At 02.30 h on the same night, a very dense line-concentration associated with a wind-shift moved across the radar site, and insects still in flight probably became entrained in this wind convergence zone and added to the line-concentration. Other evidence of long-distance, windborne migration in D. axillaris was adduced from records of captures on ships at sea, mainly off the West African coast. The consequences of downwind displacement and concentration for grasshopper ecology and pest management are discussed. The migration behaviour of D. axillaris and other grasshopper species probably reduces migration losses by the efficient location of new habitats and forms an essential part of life-history strategies for survival in a sahelian environment.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cheke, R. A., Fishpool, L. D. C. & Forrest, G. A. (1980). Oedaleus senegalensis (Krauss) (Orthoptera: Acrididae: Oedipodinae): an account of the 1977 outbreak in West Africa and notes on eclosion under laboratory conditions.—Acrida 9, 107132.Google Scholar
Clark, D. P. (1971). Flights after sunset by the Australian plague locust, Chortoicetes terminifera (Walk.), and their significance in dispersal and migration.—Aust. J. Zool. 19, 159176.CrossRefGoogle Scholar
Copr (Centre for Overseas Pest Research) (1982). The locust and grasshopper manual.—690 pp. London, Cent. Overseas Pest Res.Google Scholar
Davey, J. T., Descamps, M. & Demange, R. (1959). Notes on the Acrididae of the French Sudan, with special reference to the Central Niger Delta.—Bull. Inst. fr. Afr. Noire (A) 21, 68112, 565–600.Google Scholar
Dingle, H. (1980). Ecology and evolution of migration.—pp. 1–101 in Gauthreaux, S. A. (Ed.). Animal migration, orientation, and navigation.—387 pp. New York, Academic Press.Google Scholar
Dingle, H. (1986). Evolution and genetics of insect migration.—pp. 11–26 in Danthanarayana, W. (Ed.). Insect flight: dispersal and migration.—289 pp. Berlin, Springer-Verlag.Google Scholar
Drake, V. A. (1982). Insects in the sea-breeze front at Canberra: a radar study.—Weather, Lond. 37, 134143.CrossRefGoogle Scholar
Drake, V. A. (1985). Radar observations of moths migrating in a nocturnal low-level jet.—Ecol. Entomol. 10, 259265.CrossRefGoogle Scholar
Drake, V. A. & Farrow, R. A. (1983). The nocturnal migration of the Australian plague locust, Chortoicetes terminifera (Walker) (Orthoptera: Acrididae): quantitative radar observations of a series of northward flights.—Bull. ent. Res. 73, 567585.CrossRefGoogle Scholar
Duranton, J. F., Launois, M., Launois-Luong, M. H. & Lecoq, M. (1979). Biologie et écologie de Catantops haemorrhoidalis en Afrique de l'Ouest (Orthopt. Acrididae).—Annls Soc. ent. Fr. (N.S.) 15, 319343.CrossRefGoogle Scholar
Farrow, R. A. (1975). The African migratory locust in its main outbreak area of the Middle Niger: quantitative studies of solitary populations in relation to environmental factors.—Locusta no. 11, 198 pp.Google Scholar
Farrow, R. A. (1979). Population dynamics of the Australian plague locust, Chortoicetes terminifera (Walker), in central western New South Wales. I. Reproduction and migration in relation to weather.—Aust. J. Zool. 27, 717745.CrossRefGoogle Scholar
Fishpool, L. D. C. & Popov, G. B. (1984). The grasshopper faunas of the savannas of Mali, Niger, Benin and Togo.—Bull. Inst. Fond. Afr. Noire (A) 43, 275410.Google Scholar
Gibo, D. L. (1986). Flight strategies of migrating monarch butterflies (Danaus plexippus L.) in southern Ontario.—pp. 172–184 in Danthanarayana, W. (Ed.). Insect flight: dispersal and migration.—289 pp. Berlin, Springer-Verlag.Google Scholar
Gunn, D. L. & Rainey, R. C. (Eds). (1979). Strategy and tactics of control of migrant pests.—Phil. Trans. R. Soc. (B) 287, 245488.Google Scholar
Hughes, R. D. (1979). Movement in population dynamics.—pp. 14–34 in Rabb, R. L. & Kennedy, G. G. (Eds). Movement of highly mobile insects: concepts and methodology in research.—456 pp. Raleigh, North Carolina, N. Carolina St. Univ.Google Scholar
Jago, N. D. (1984). The alate genera of East African Catantopinae (Orthoptera, Acridoidea) including revision of the genus Catantops Schaum.—Trans. Am. ent. Soc. 110, 295387.Google Scholar
Johnson, C. G. (1969). Migration and dispersal of insects by flight.—763 pp. London, Methuen.Google Scholar
Joyce, R. J. V. (1952). The ecology of grasshoppers in East Central Sudan.—Anti-Locust Bull. no. 11, 96 pp.Google Scholar
Joyce, R. J. V. (1976). Insect flight in relation to problems of pest control.—pp. 135–155 in Rainey, R. C. (Ed.). Insect flight.—287 pp. Oxford, Blackwell (Symp. R. Ent. Soc. no. 7).Google Scholar
Joyce, R. J. V. (1981). The control of migrant pests.—pp. 209–229 in Aidley, D. J. (Ed.). Animal migration.—264 pp. Cambridge, Univ. Press.Google Scholar
Joyce, R. J. V. (1983). Aerial transport of pests and pest outbreaks.—EPPO Bull. 13 (2), 111119CrossRefGoogle Scholar
Lecoq, M. (1978 a). Biologie et dynamique d'un peuplement acridien de zone soudanienne en Afrique de l'Ouest (Orthoptera, Acrididae).—Annls Soc. ent. Fr. (N.S.) 14, 603681.CrossRefGoogle Scholar
Lecoq, M. (1978 b). Les deplacements par a grande distance chez les acridiens des zones sahelienneet soudanienne en Afrique de l'Ouest.—C. r. hebd. Séanc. Acad. Sci., Paris (D) 286, 419422.Google Scholar
O.C.La.Lav. (Organisation Commune de Lutte Antiacridienne et de Lutte Antiaviaire) (1978). Signalisation Acridienne, October 1978.—6 pp. Dakar, O.C.La.Lav. (Bull. no. 10).Google Scholar
Pedgley, D. E. (1980). Weather and airborne organisms.—Tech. Notes Wld met. Org. no. 173, 115 pp.Google Scholar
Popov, G. B. (1976). The 1974 outbreak of grasshoppers in western Africa.—pp. 35–43 in Smith, R. F. & Schlegel, D. E. (Eds). Report of the Sahel Crop Pest Management Conference, held at the invitation of the Agency for International Development, United States Department of State, Washington DC, USA, 12 11–12, 1974. Berkeley, Univ. California (for United States Agency for International Development).Google Scholar
Rainey, R. C. (1951). Weather and the movements of locust swarms: a new hypothesis.—Nature, Lond. 168, 10571060.CrossRefGoogle Scholar
Rainey, R. C. (1963). Meteorology and the migration of desert locusts: applications of synoptic meteorology in locust control.—Tech. Notes Wld met. Org. no. 54, 115 pp. (Also as Anti-Locust Mem. no. 7.)Google Scholar
Rainey, R. C. (1976). Flight behaviour and features of the atmospheric environment.—pp. 75–112 in Rainey, R. C. (Ed.). Insect flight.—287 pp. Oxford, Blackwell (Symp. R. Ent. Soc. no. 7).Google Scholar
Rainey, R. C. (1979). Dispersal and redistribution of some Orthoptera and Lepidoptera by flight.—Mitt. schweiz. ent. Ges. 52, 125132.Google Scholar
Rankin, M. A. (1985). Introduction.—pp. 1–4 in Rankin, M. A. (Ed.). Migration: mechanisms and adaptive significance.—868 pp. Port Aransas, Texas, Marine Sci. Inst. (Contributions in Marine Science, supplement vol. 7).Google Scholar
Reid, D. G., Wardhaugh, K. G. & Roffey, J. (1979). Radar studies of insect flight at Benalla, Victoria, in February 1974.—Tech. Pap. Div. Ent. C.S.I.R.O. Aust. no. 16, 21 pp.Google Scholar
Riley, J. R. (1974). Radar observations of individual desert locusts (Schistocerca gregaria (Forsk.) (Orthoptera, Locustidae)).—Bull. ent. Res. 64, 1932.CrossRefGoogle Scholar
Riley, J. R. (1975). Collective orientation in night-flying insects.—Nature, Lond. 253, 113114.CrossRefGoogle Scholar
Riley, J. R. (1980). Radar as an aid to the study of insect flight.—pp. 131–140 in Amlaner, C. J. Jr. & MacDonald, D. W. (Eds). Handbook on biotelemetry and radio tracking.—804 pp. Oxford, Pergamon Press.Google Scholar
Riley, J. R. & Reynolds, D. R. (1979). Radar-based studies on the migratory flight of grasshoppers in the middle Niger area of Mali.—Proc. R. Soc. (B) 204, 6782.Google ScholarPubMed
Riley, J. R. & Reynolds, D. R. (1983). A long-range migration of grasshoppers observed in the sahelian zone of Mali by two radars.—J. Anim. Ecol. 52, 167183.CrossRefGoogle Scholar
Riley, J. R. & Reynolds, D. R. (1986). Orientation at night by high-flying insects.—pp. 71–87 in Danthanarayana, W. (Ed.). Insect flight: dispersal and migration.—289 pp. Berlin, Springer-Verlag.Google Scholar
Ritchie, J. M. (1978). Melanism in Oedaleus senegalensis and other oedipodines (Orthoptera, Acrididae).—Jnl nat. Hist. 12, 153162.CrossRefGoogle Scholar
Schaefer, G. W. (1976). Radar observations of insect flight.—pp. 157–197 in Rainey, R. C. (Ed.). Insect flight.—287 pp. Oxford, Blackwell (Symp. R. Ent. Soc. no. 7).Google Scholar
Solbreck, C. (1978). Migration, diapause, and direct development as alternative life histories in a seed bug, Neacoryphus bicrucis.—pp. 195–217 in Dingle, H. (Ed.). Evolution of insect migration and diapause.—284 pp. New York, Springer-Verlag.Google Scholar
Southwood, T. R. E. (1977). Habitat, the templet for ecological strategies?J. Anim. Ecol. 46, 337365.CrossRefGoogle Scholar
Taylor, L. R. (1986). The four kinds of migration.—pp. 265–280 in Danthanarayana, W. (Ed.). Insect flight: dispersal and migration.—289 pp. Berlin, Springer-Verlag.Google Scholar
Wolf, W. W., Sparks, A. N., Pair, S. D., Westbrook, J. K. & Truesdale, F. M. (1986). Radar observations and collections of insects in the Gulf of Mexico.—pp. 221–234 in Danthanarayana, W. (Ed.). Insect flight: dispersal and migration.—289 pp. Berlin, Springer-Verlag.Google Scholar