Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T18:55:02.208Z Has data issue: false hasContentIssue false

A Method for investigating Membrane Permeability

Published online by Cambridge University Press:  10 July 2009

S. T. P. Brightwell
Affiliation:
Locust Laboratory, Imperial Institute of Entomology.

Extract

Recent developments of physiology have emphasised the importance of membranes, and in entomology, studies on the permeability of membranes would offer the necessary basis for investigations on the physiological action of insecticides, particularly those applied externally, as well as on the many aspects of insect physiology.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1938

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R. L. (1926). Contribution to the physiology of digestion in the Australian roach Periplaneta australasiae Fab.—J. Exp. Zool., Philadelphia, 44, p. 219.CrossRefGoogle Scholar
Alexandrov, W. J. (1935). The permeability of chitin in some dipterous larvae and the method of its study.—Acta Zool., Stockholm, 16, p. 1.CrossRefGoogle Scholar
Britton, H. S. (1934). Conductometric analysis.—London.CrossRefGoogle Scholar
Cole, K. S. & Jahn, J. L. (1937). The nature and permeability of grasshopper egg membranes. IV. The alternating current impedance over a wide frequency range.—J. Cell. & Comp. Physiol., Philadelphia, 10, p. 265.CrossRefGoogle Scholar
Collander, R. (1937). Permeability.—Ann. Rev. Biochem., Stanford, Ky. 6.CrossRefGoogle Scholar
Davies, C. W. (1933). Conductivity of solutions.—Second edition, London.CrossRefGoogle Scholar
Driesch, H. (1929). Science and philosophy of the organism.—London, p. 120.Google Scholar
Eidmann, H. (1922). Die Durchlässigkeit des Chitins bei osmotischen Vorgängen.—Biol. Zbl., Leipzig, 42, p. 429.Google Scholar
Glover, L. H. & Richardson, C. H. (1936). The penetration of gaseous pyridine, piperidine, and nicotine into the body of the American cockroach Periplaneta americana L.Iowa St. Coll. J. Sci., 10, p. 249.Google Scholar
Gregory, F. G. & Pearse, H. L. (1936). The resistance porometer and its application to the study of stomatal movement.—Proc. Roy. Soc., London, 114, B, p. 477.Google Scholar
Hague, B. (1930). Alternating current bridge methods.—London.Google Scholar
Hartung, E. J., Kelly, F. H. C. & Wertheim, J. (1937). Studies on membrane permeability. I. The measurement of the permeability of membranes to solutes.—Trans. Faraday Soc., London, 33, p. 398.Google Scholar
Hermans, J. J. (1937). Diffusion of an electrolyte. I. Theoretical. II. Experimental.—Rec. Trav. chim., Leyde, 56, pp. 635, 658.CrossRefGoogle Scholar
Hitchcock, D. I. (1925). Protein films on collodion membranes.—J. Gen. Physiol., New York, 8, p. 61.Google Scholar
Hoskins, W. M. (1932). Toxicity and permeability. I. The toxicity of acid and basic solutions of sodium arsenate to mosquito pupae.—J. Econ. Ent., 25, p. 1212.CrossRefGoogle Scholar
Hutton, M. E. & Porter, R. H. (1937). Seed impermeability and viability of native and introduced species of Leguminosae.—Iowa St. Coll. J. Sci., 12, p. 5.Google Scholar
Ivanova, P. G. (1936). The permeability of the integument of insects with regard to anabasine.—Izv. Kurs. prikl. Zool., Leningrad, 6 (3), p. 25.Google Scholar
Jacobs, M. H. (1935). Diffusion processes.—Erg. Biol., Berlin, 12, p. 1.Google Scholar
Jacobs, M. H. & Stewart, D. M. (1932). A simple method for the quantitative measurement of cell permeability.—J. Cell. & Comp. Physiol., Philadelphia, 1, p. 71.CrossRefGoogle Scholar
Jahn, J. L. (1936). Studies on the nature and permeability of the grasshopper egg membranes. III. Changes in the electrical properties of membranes during development.—J. Cell. & Comp. Physiol., Philadelphia, 8, p. 289.CrossRefGoogle Scholar
Jones, G. & Bollinger, D. M. (1935). The measurement of the conductivity of electrolytes. VII. On platinisation.—J. Amer. Chem. Soc., 57, p. 280.CrossRefGoogle Scholar
Krogh, A. (1937). Animal membranes.—Trans. Faraday Soc., London, 33, p. 912.Google Scholar
Lepesme, P. (1937). L'action externe des arsenicaux sur le criquet pélerin (Schistocerca gregaria Forsk.).—Bull. Soc. d'Hist. nat. Afr. Nord, 28, p. 88.Google Scholar
Michaelis, L. & Perlzweig, W. A. (1927). Studies on permeability of membranes I. Introduction and the diffusion of ions across the dried collodion membrane.—J. Gen. Physiol., New York, 10, p. 575 ; and later papers.CrossRefGoogle ScholarPubMed
Morozov, S. F. (1935). The penetration of contact insecticides. Part I. Methods of investigation and general properties of the cuticle with regard to its permeability.—Plant Prot., Leningrad, 6, p. 38.Google Scholar
Newton, R. C. (1935). An improved electrical conductivity method for the estimation of carbon dioxide and other reactive gases.—Ann. Bot., London, 49, p. 381.Google Scholar
O'Kane, W. C. & Glover, L. C. (1935). Penetration of arsenic into insects. Studies of contact insecticides, X.Tech. Bull. N. H. Agric. Exp. Sta., 63.Google Scholar
O'Kane, W. C. (1936). Further determinations of the penetration of arsenic into insects. Studies of contact insecticides, XI.—Tech. Bull. N. H. Agric. Exp. Sta., 65.Google Scholar
Onsager, L. & Fuoss, R. M. (1932). Irreversible processes in electrolyte, diffusion, conductance and viscous flow in arbitrary mixtures of strong electrolytes.—J. Phys. Chem., Ithaca, N.Y., 36, p. 2689.CrossRefGoogle Scholar
Osterhout, W. J. V. (1933). Permeability in large plant cells and in models.—Erg. Physiol., München, 35, p. 967.Google Scholar
Shedlovsky, T. (1930). A screened bridge for the measurement of electrolytic conductance. I. Theory of capacity error. II. Description of the bridge.—J. Amer. Chem. Soc., 52, p. 1793.CrossRefGoogle Scholar
Spiegel, Adolf M. & Spiegel, E. (1934). Polarization studies in tissue models.—Proc. Soc. Exp. Biol. Med., New York, 32, p. 139.Google Scholar
Stiles, W. (1921). Permeability.—New Phytologist, Cambridge, 20, p. 45.Google Scholar
Teorell, T. (1937). Contribution to discussion “ The theory of membrane equilibrium ” by G. S. Adair.—Trans. Far. Soc., London, 33, pp. 11061116, 11411142.Google Scholar
Williams, J. W., & Cady, L. C. (1934). Molecular diffusion in solution.—Chemical Reviews, Baltimore, Md., 14, p. 171.CrossRefGoogle Scholar
Yonge, C. M. (1932). On the nature and permeability of chitin, I. The chitin lining the foregut of decapod crustacea and the function of the tegumental glands.—Proc. Roy. Soc., London, 111, B, p. 298.Google Scholar
Yonge, C. M. (1936). On the nature and permeability of chitin. II. The permeability of the uncalcified chitin lining the foregut of Homarus.—Proc. Roy. Soc. London, 120, B, p. 15.Google Scholar