Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T20:27:35.089Z Has data issue: false hasContentIssue false

Low susceptibility of non-target Lepidopteran maize pests to the Bt protein Cry1Ab

Published online by Cambridge University Press:  15 June 2012

M. Pérez-Hedo
Affiliation:
Universitat de Lleida, Centre UdL-IRTA, AGROTECNIO Center, RoviraRoure 191, 25198 Lleida, Spain
C. López
Affiliation:
Universitat de Lleida, Centre UdL-IRTA, AGROTECNIO Center, RoviraRoure 191, 25198 Lleida, Spain
R. Albajes
Affiliation:
Universitat de Lleida, Centre UdL-IRTA, AGROTECNIO Center, RoviraRoure 191, 25198 Lleida, Spain
M. Eizaguirre*
Affiliation:
Universitat de Lleida, Centre UdL-IRTA, AGROTECNIO Center, RoviraRoure 191, 25198 Lleida, Spain
*
*Author for correspondence Fax:+34 973 23 82 67 E-mail: [email protected]

Abstract

Transgenic Bt maize expressing the Cry1Ab toxin is poorly effective for suppressing populations of two non-target Lepidoptera, Mythimna unipuncta and Helicoverpa armigera. In order to determine the mechanisms that may be involved in this poor effectiveness, last instar larvae of the two Lepidoptera were fed with a diet containing lyophilized leaves with Bt vs non-Bt toxin for different periods; additionally, some larvae fed on Bt diet were transferred to non-Bt diet for an additional period. In the experimental larvae, we measured the growth (weight) gain from just before treatment to after the end of the treatment, and the Cry1Ab contents in the hemolymph, the peritrophic membrane and its contents and midgut epithelium. Effects of the treatments on the midgut epithelium were observed by light and transmission electron microscopy. It was seen that multiple mechanisms can be involved in the low susceptibility of the two Lepidoptera. The low content of the toxin within the peritrophic membrane 48h after ingestion indicates a high rate of toxin elimination in this space. Moreover, M. unipuncta larvae fed on the Bt diet displayed a similar growth gain index to those fed on the non-Bt diet, and showed an increasing elimination rate during the experiment. Little toxin reached the midgut epithelium, indicating a low permeability of the peritrophic membrane or a low affinity at the binding sites. Larvae fed on the Bt toxin showed rapid recovery in weight gain and in the midgut epithelium, and also showed overcompensation mechanisms.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baines, D., Schwartz, J.L., Sohi, S., Dedes, J. & Pang, A. (1997) Comparison of the response of midgut epithelial cells and cell lines from lepidopteran larvae to CryIA toxins from Bacillus thuringiensis. Journal of Insect Physiology 43, 823831.Google Scholar
Ballester, V., Granero, F., Tabashnik, B.E., Malvar, T. & Ferre, J. (1999) Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Applied and Environmental Microbiology 65, 14131419.Google Scholar
Bird, L.J. & Akhurst, R.J. (2007) Variation of susceptibility of Helicovepa armigera (Hüber) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxin. Journal of invertebrate Pathology 94, 8494.Google Scholar
Bravo, A., Soberón, M. & Gill, S.S. (2005) Bacillus thuringiensis: mechanisms and use. Comprehensive Molecular Insect Science 6, 175205.Google Scholar
Broderick, N.A., Raffa, K.F. & Handelsman, J. (2006) Midgut bacteria required for bacillus thuringiensis insecticidal activity. The Proceedings of the National Academy of Sciences of the United States of America 103, 1519615199.Google Scholar
Broderick, N.A., Robinson, C.J., McMahon, M.D., Holt, J., Handelsman, J. & Raffa, K.F. (2009) Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across arrange of Lepidoptera. BMC Biology 7, 19.CrossRefGoogle Scholar
Bues, R., Poitout, S., Anglade, P. & Robin, J.C. (1986) Cycle évolutif et hivernation de Mythimna (Syn. Pseudaletia) unipuncta Haw. (Lep. Noctuidae) dans le sud de la France. Acta Oecologica 7, 151156.Google Scholar
Bulla, L.A., Kramer, K.J., Cox, D.J., Jones, B.L., Davidson, L.I. & Lookhart, G.L. (1981) Purification and characterization of the entomocidal protoxin of Bacillus thuringiensis. Journal of Biological Chemistry 256, 30003004.Google Scholar
Cavados, C.F.G., Majerowicz, S., Chaves, J.Q., Araujo-Coutinho, C.J.P.C. & Rabinovitch, L. (2004) Histopathological and ultrastructural effects of delta-endotoxins of Bacillus thuringiensis serovar israelensis in the midgut of Simulium pertinax larvae (Diptera, Simuliidae). Memorias do Instituto Oswaldo Cruz 99, 493498.Google Scholar
Cohen, E. (2006) Pesticide-mediated homeostatic modulation in arthropods. Pesticide Biochemistry and Physiology 85, 2127.CrossRefGoogle Scholar
Eizaguirre, M. & Albajes, R. (1992) Diapause induction in the stem corn borer, Sesamia nonagrioides (Lepidoptera: Noctuidae). Entomologia Generalis 17, 277283.Google Scholar
Eizaguirre, M., Madeira, F. & López., C. (2010) Effects of Bt maize on non-target Lepidoptera pests. IOBC/WPRS Bulletin 52, 4955.Google Scholar
Ferre, J. & Van Rie, J. (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology 47, 501533.Google Scholar
Fitt, G.P. (1989) The ecology of Heliothis species in relation to agro-ecosystem. Annual Review of Entomology 34, 1752.Google Scholar
Gill, S.S. (1992) The mode of action of Bacillus thuringiensis endotoxin. Annual Review of Entomology 37, 615636.Google Scholar
Granados, R.R., Fu, Y., Corsaro, B. & Hughes, P.R. (2001) Enhancement of Bacillus thuringiensis toxicity to lepidopterous species with the enhancin from Trichoplusia ni granulovirus. Biological Control 20, 153159.CrossRefGoogle Scholar
Head, G., Brown, C.R., Groth, M.E. & Duan, J.J. (2001) Cry1Ab protein levels in phytophagous insects feeding on transgenic corn: implications for secondary exposure risk assessment. Entomologia Experimentalis et Applicata 99, 3745.Google Scholar
Heckel, D.G., Gahan, L.J., Baxter, S.W., Zhao, J.Z., Shelton, A.M., Gould, F. & Tabashnik, B.E. (2007) The diversity of Bt resistance genes in species of Lepidoptera. Journal of Invertebrate Pathology 95, 192197.Google Scholar
Hellmich, R.L., Albajes, R., Bergvinson, D., Prasifka, J.R., Wang, Z.Y. & Weiss, M.J. (2008) The present and future role of insect-resistant GM crops in maize IPM. pp. 119158in Romeis, J., Shelton, A.M. & Kennedy, G.G. (Eds) Integration of Insect-Resistant Genetically Modified Crops within IPM Programs. Dordrecht, The Netherlands, Springer.Google Scholar
Ibargutxi, M.A., Estela, A., Ferre, J. & Caballero, P. (2006) Use of Bacillus thuringiensis toxin for control of the cotton pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Applied and Environmental Microbiology 72, 437442.Google Scholar
James, C. (2010) Global status of commercialized Biotech/GM crops: 2010. ISAAA Brief No. 42. Ithaca, NY, USA, ISAAA.Google Scholar
Knaak, N., Franz, A.R., Santos, G.F. & Fiuza, L.M. (2010) Histopathology and the lethal effect of Cry proteins and strains of Bacillus thuringiensis Berliner in Spodoptera frugiperda JE Smith Caterpillars (Lepidoptera, Noctuidae). Brazilian Journal of Biology 70, 677684.Google Scholar
Knowles, B.H. (1994) Mechanism of action of Bacillus thuringiensis delta-endotoxins. Advances in Insect Physiology 24, 275308.Google Scholar
Levy, S.M., Falleiros, A.M.F., Moscardi, F., Gregorio, E.A. & Toledo, L.A. (2004) Morphological study of the hindgut in larvae of Anticarsia gemmatalis Hubner (Lepidoptera: Noctuidae). Neotropical Entomology 33, 427431.Google Scholar
Loeb, M.J., Martin, P.A.W., Hakim, R.S., Goto, S. & Takeda, M. (2001) Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. Journal of Insect Physiology 47, 599606.CrossRefGoogle ScholarPubMed
López, C., Madeira, F., Pons, X. & Eizaguirre, M. (2008) Desarrollo larvario y número de estadios larvarios de Pseudaletia unipuncta alimentadas con dos variedades de maíz y dos dietas semisintéticas. Boletin de Sanidad Vegetal, Plagas 34, 267274.Google Scholar
McNeil, J.N., Miller, D., Laforge, M. & Cusson, M. (2000) The biosynthesis of juvenile hormone, its degradation and titres in females of the true armyworm: a comparison of migratory and non-migratory populations. Physiological Entomology 25, 103111.Google Scholar
Obrist, I.B., Dutton, A., Albajes, R. & Bigler, F. (2006) Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields. Ecological Entomology 31, 143154.Google Scholar
Pérez-Hedo, M., Albajes, R. & Eizaguirre, M. (2011) Modification of hormonal balance in larvae of the corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae) due to sublethal Bacillus thuringiensis protein ingestion. Journal of Economic Entomology 104, 853861.Google Scholar
Pérez-Hedo, M., Marques, T., López, C., Albajes, R. & Eizaguirre, M. (2012) Determination of the Cry1Ab toxin in Helicoverpa armigera larvae fed on diet containing lyophilized Bt leaves. IOBC/WPRS Bulletin 73, 7581.Google Scholar
Rees, J.S., Jarrett, P. & Ellar, D.J. (2009) Peritrophic mambrane contribution to Bt cry δ-endotoxin susceptibility in Lepidoptera and the effect of Calcofluor. Journal of Invertebrate Pathology 100, 139146.Google Scholar
Reynolds, E.S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron mocroscopy. Journal of Cell Biology 17, 208212.Google Scholar
SAS Institute (2001) SAS/STAT user's guide, version 9.2, Cary, NC, USA.Google Scholar
Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R. & Dean, D.H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews 62, 775806.Google Scholar
Shao, Z.Z., Cui, Y.L., Liu, X.L., Yi, H.Q., Ji, J.H. & Yu, Z.N. (1998) Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. Journal of Invertebrate Pathology 72, 7381.Google Scholar
Shorey, H. & Hale, R. (1965) Mass rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology 58, 522524.Google Scholar
Sousa, M.E.C., Santos, F.A.B., Wanderley-Teixeira, V., Teixeira, A.A.C., de Siqueira, H.A.A., Alves, L.C. & Torres, J.B. (2010) Histopathology and ultrastructure of midgut of Alabama argillacea (Hubner) (Lepidoptera Noctuidae) fed Bt-cotton. Journal of Insect Physiology 56, 19131919.Google Scholar
Spies, A.F. & Spence, K.D. (1985) Effect of sublethal Bacillus thiringiensis crystal endotoxin treatment on the larval midgut of a moth, Manduca: SEM study. Tissues and Cell 17, 379394.Google Scholar
Torres-Vila, L.M., Rodriguez-Molina, M.C., Lacasa-Plasencia, A., Bielza-Lino, P. & Rodriguez-del-Rincon, A. (2002) Pyrethroid resistance of Helicoverpa armigera in Spain: current status and agroecological perspective. Agriculture Ecosystems and Environment 93, 5566.Google Scholar
Whalon, M.E. & Wingerd, B.A. (2003) Bt: Mode of action and use. Archives of Insect Biochemistry and Physiology 54, 200211.Google Scholar