Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T06:19:39.013Z Has data issue: false hasContentIssue false

Long-term spatio-temporal dynamics of the mosquito Aedes aegypti in temperate Argentina

Published online by Cambridge University Press:  23 November 2016

S. Fischer*
Affiliation:
Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
M.S. De Majo
Affiliation:
Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
L. Quiroga
Affiliation:
Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
M. Paez
Affiliation:
Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
N. Schweigmann
Affiliation:
Departamento de Ecología, Genética y Evolución, and IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
*
*Author for correspondence Phone: +54-11-4576-3300/09 (int. 364) Fax: +54-11-4576-3372 E-mail: [email protected]

Abstract

Buenos Aires city is located near the southern limit of the distribution of Aedes aegypti (Diptera: Culicidae). This study aimed to assess long-term variations in the abundance of Ae. aegypti in Buenos Aires in relation to changes in climatic conditions. Ae. aegypti weekly oviposition activity was analyzed and compared through nine warm seasons from 1998 to 2014, with 200 ovitraps placed across the whole extension of the city. The temporal and spatial dynamics of abundances were compared among seasons, and their relation with climatic variables were analyzed. Results showed a trend to higher peak abundances, a higher number of infested sites, and longer duration of the oviposition season through subsequent years, consistent with a long-term colonization process. In contrast, thermal favorability and rainfall pattern did not show a consistent trend of changes. The long-term increase in abundance, and the recently documented expansion of Ae. aegypti to colder areas of Buenos Aires province suggest that local populations might be adapting to lower temperature conditions. The steadily increasing abundances may have implications on the risk of dengue transmission.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barros, V. & Camilloni, I. (1994) Urban-biased trends in Buenos Aires’ mean temperature. Climate Research 4, 3345.Google Scholar
Basso, C., Garcia da Rosa, E., Lairihoy, R., Gonzalez, C., Roche, I., Caffera, R.M. & da Rosa, R. (2016) Epidemiologically relevant container types, indices of abundance and risk conditions for Aedes aegypti in Salto (Uruguay), a city under threat of dengue disease. Journal of Emerging Infectious Diseases 103, 19. doi: 10.4172/jeid.1000103.Google Scholar
Becker, N., Pluskota, B., Kaiser, A. & Schaffner, F. (2012) Exotic mosquitoes conquer the world. in Melhorn, H. (Ed.) Arthropods as Vectors of Emerging Diseases. Parasitology Research Monographs 3, 3160. Berlin, Springer.Google Scholar
Campos, R.E. (1993) Presencia de Aedes (Stegomyia) aegypti L. (Diptera: Culicidae) en la localidad de Quilmes (Buenos Aires, Argentina). Revista de la Sociedad Entomológica Argentina 52, 36.Google Scholar
Campos, R.E. & Maciá, A. (1996) Observaciones biológicas de una poblaciones natural de Aedes aegypti (Diptera: Culicidae) en la Provincia de Buenos Aires, Argentina. Revista de la Sociedad Entomológica Argentina 55, 6772.Google Scholar
Carbajo, A.E., Gomez, S.M., Curto, S.I. & Schweigmann, N.J. (2004) Variación espacio-temporal del riesgo de transmisión de dengue en la ciudad de Buenos Aires. Medicina (Buenos Aires) 64, 231234.Google Scholar
Carbajo, A.E., Curto, S.I. & Schweigmann, N.J. (2006) Spatial distribution patterns of oviposition in the mosquito Aedes aegypti in relation to urbanization in Buenos Aires: southern fringe bionomics of an introduced vector. Medical and Veterinary Entomology 20, 209218.Google Scholar
Ceriani Nakamurakare, E., Macchiaverna, N., Ojeda, C., Sarracín, M.P., Guntín, E., Contreras, M., Maqueda, C., Guillade, G., Lobato, P., Pujadas, J., Cuervo, E., Rodríguez, M., Piantanida, P., Padulles, L., Anacoreto, N., Cevey, A., López Alarcón, M., Perkins, A., Álvarez Costa, A. & Burroni, N. (2011) Recipientes criaderos de Aedes aegypti y Culex pipiens en CABA y GBA. 2° Encuentro Nacional sobre Enfermedades Olvidadas y XIV Simposio Internacional sobre Control Epidemiológico de Enfermedades Transmitidas por Vectores, Ciudad de Buenos Aires, Octubre.Google Scholar
Chang, L.H., Hsu, E.L., Teng, H.J. & Ho, C.M. (2007) Differential survival of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae exposed to low temperatures in Taiwan. Journal of Medical Entomology 44, 205210.CrossRefGoogle ScholarPubMed
Curto, S.I., Boffi, R., Carbajo, A.E., Plastina, R. & Schweigmann, N. (2002) Reinfestación del territorio argentino por Aedes aegypti. Distribución geográfica (1994–1999). pp. 127137 in Salomón, O.D. (Ed.) Actualizaciones en Artropodología Sanitaria Argentina. Buenos Aires, Fundación Mundo Sano.Google Scholar
Del Ponte, E. & Blacksley, J.C. (1947) Importancia sanitaria de los Culicidae en la Ciudad de Buenos Aires. Prensa Médica Argentina XXXIV, 821824.Google Scholar
De Majo, M.S., Fischer, S., Otero, M. & Schweigmann, N. (2013) Effects of thermal heterogeneity and egg mortality on differences in the population dynamics of Aedes aegypti (Diptera: Culicidae) over short distances in temperate Argentina. Journal of Medical Entomology 50, 543551.Google Scholar
Dhimal, M., Gautam, I., Joshi, H.D., O'Hara, R.B., Ahrens, B. & Kuch, U. (2015) Risk factors for the presence of Chikungunya and Dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal. PLoS Neglected Tropical Diseases 9, e0003545.Google Scholar
Di Rienzo, J.A., Guzman, A.W. & Casanoves, F. (2002) A multiple comparisons method based on the distribution of the root node distance of a binary tree obtained by average linkage of the matrix of euclidean distances between treatment means. Journal of Agricultural, Biological and Environmental Statistics 7, 129142.Google Scholar
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. & Robledo, C.W. (2014) InfoStat Version 2014. Argentina, Grupo InfoStat, FCA, Universidad Nacional de Córdoba. Available online at http://www.infostat.com.ar.Google Scholar
Eisen, L. & Moore, C.G. (2013) Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. Journal of Medical Entomology 50, 467478.CrossRefGoogle ScholarPubMed
Fay, R.W. & Eliason, D.A.A. (1966) Preferred oviposition sites as surveillance methods for Aedes aegypti . Mosquito News 26, 531535.Google Scholar
Fischer, S., Alem, I.S., De Majo, M.S., Campos, R.E. & Schweigmann, N. (2011) Cold season mortality and hatching behavior of Aedes aegypti L. (Diptera: Culicidae) eggs in Buenos Aires City, Argentina. Journal of Vector Ecology 36, 9499.Google Scholar
Focks, D.A., Haile, D.G., Daniels, E. & Mount, G.A. (1993) Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. Journal of Medical Entomology 30, 10031017.Google Scholar
Gubler, D.J. (2004) The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comparative Immunology, Microbiology, and Infectious Diseases 27, 319330.Google Scholar
Holm, S. (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 6570.Google Scholar
Junín, B., Grandinetti, H., Marconi, J.M. & Carcavallo, R.U. (1995) Vigilancia de Aedes aegypti (L) en la ciudad de Buenos Aires (Argentina). Entomología y Vectores 2, 7175.Google Scholar
Kearney, M., Porter, W.P., Williams, C., Ritchie, S. & Hoffmann, A.A. (2009) Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Functional Ecology 23, 528538.Google Scholar
Lounibos, P.L. (2002) Invasions by insect vectors of human disease. Annual Review of Entomology 47, 233266.CrossRefGoogle ScholarPubMed
Lozano-Fuentes, S., Hayden, M.H., Welsh-Rodriguez, C., Ochoa-Martinez, C., Tapia-Santos, B., Kobylinski, K.C., Uejio, C.K., Zielinski-Gutierrez, E., Delle Monahe, L., Monaghan, A.J., Steinhoff, D.F. & Eisen, L. (2012) The dengue virus mosquito vector Aedes aegypti at high elevation in Mexico. American Journal of Tropical Medicine and Hygiene 87, 902909.CrossRefGoogle ScholarPubMed
Mehrotra, S., Rosenzweig, C., Solecki, W.D., Natenzon, C.E., Omojola, A., Folorunsho, R. & Gilbride, J. (2011) Cities, disasters and climate risk. pp. 1542 in Rosenzweig, C., Solecki, W.D., Hammer, S.A. & Mehrotra, S. (Eds) Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
Ministry of Health of Argentina (2010) Situación del dengue en Argentina, primer semestre de 2009. Boletín epidemiológico periódico. Edición especial 2009. Available online at http://www.msal.gob.ar/saladesituacion/epidemiologia_boletines.php.Google Scholar
Ministry of Health of Argentina (2016) Boletín integrado de vigilancia No 312. Semana epidemiológica 22. Available online at http://www.msal.gob.ar/index.php/home/boletin-integrado-de-vigilancia. Bulletin.Google Scholar
Morrison, A.C., Gray, K., Getis, A., Astete, H. & Sihuincha, M. (2004) Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos. Peru. Journal of Medical Entomology 41, 11231142.Google Scholar
Natiello, M., Ritacco, V., Morales, M.A., Deodato, B., Picollo, M., Dinerstein, E., & Enria, D. (2008) Indigenous dengue fever, Buenos Aires, Argentina. Emerging Infectious Diseases 9, 14981499.CrossRefGoogle Scholar
Otero, M. & Solari, H.G. (2010) Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Mathematical Biosciences 223, 3246.Google Scholar
Otero, M., Schweigmann, N. & Solari, H.G. (2008) A stochastic spatial dynamical model for Aedes aegypti . Bulletin of Mathematical Biology 70, 12971325.Google Scholar
Pinheiro, J. & Bates, D.M. (2004) Mixed-effects Models in S and S-PLUS. New York, NY, Springer.Google Scholar
R Core Team (2015) R: a Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical computing. Available online at http://www.R-project.org/.Google Scholar
Reiter, P. & Sprenger, D. (1987) The used tire trade: a mechanism for the worldwide dispersal of container breeding mosquitoes. Journal of the American Mosquito Control Association 3, 494501.Google ScholarPubMed
Romeo Aznar, V., Otero, M., De Majo, M.S., Fischer, S. & Solari, H.G. (2013) Modeling the complex hatching and development of Aedes aegypti in temperate climates. Ecological Modelling 253, 4455.Google Scholar
Rubio, A., Bellocq, M.I. & Vezzani, D. (2012) Community structure of artificial container-breeding flies (Insecta: Diptera) in relation to the urbanization level. Landscape and Urban Planning 105, 288295.Google Scholar
Schweigmann, N., Orellano, P., Kuruk, J., Vera, T.M., Besan, D. & Méndez, A. (2002) Distribución y abundancia de Aedes aegypti (Diptera: Culicidae) en la ciudad de Buenos Aires. pp. 155160 in Salomón, O.D. (Ed.) Actualizaciones en Artropodología Sanitaria Argentina. Buenos Aires, Fundación Mundo Sano.Google Scholar
Schweigmann, N., Rizzotti, A., Castiglia, G., Gribaudo, F., Marcos, E., Burroni, N., Freire, G., D'Onofrio, V., Oberlander, S., Schillaci, H., Gómez, S., Maldonado, S. & Serrano, C. (2009) Información, conocimiento y percepción sobre el riesgo de contraer el dengue en Argentina: Dos experiencias de intervención para generar estrategias locales de control. Cadernos de Saúde Pública 25, 137148.CrossRefGoogle ScholarPubMed
Soper, F.L. (1967) Dynamics of Aedes aegypti distribution and density. Seasonal Fluctuations in the Americas. Bulletin of the World Health Organization 36, 536538.Google Scholar
Vezzani, D. & Carbajo, A.E. (2008). Aedes aegypti, Aedes albopictus, and dengue in Argentina: current knowledge and future directions. Memorias do Instituto Oswaldo Cruz 103, 6674.Google Scholar
Zanotti, G., De Majo, M.S., Alem, I., Schweigmann, N., Campos, R.E. & Fischer, S. (2015) New records of Aedes aegypti at the southern limit of its distribution in Buenos Aires province, Argentina. Journal of Vector Ecology 40, 408411.Google Scholar