Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T18:15:40.328Z Has data issue: false hasContentIssue false

Life begins when the sea lion is ashore: microhabitat use by a louse living on a diving mammal host

Published online by Cambridge University Press:  16 January 2012

M.S. Leonardi*
Affiliation:
Laboratorio de Mamíferos Marinos, Centro Nacional Patagónico (CONICET), Boulevard Brown 2915, PC U9120ACV, Puerto Madryn, Argentina
E.A. Crespo
Affiliation:
Laboratorio de Mamíferos Marinos, Centro Nacional Patagónico (CONICET), Boulevard Brown 2915, PC U9120ACV, Puerto Madryn, Argentina
D.G. Vales
Affiliation:
Laboratorio de Mamíferos Marinos, Centro Nacional Patagónico (CONICET), Boulevard Brown 2915, PC U9120ACV, Puerto Madryn, Argentina
M. Feijoo
Affiliation:
Laboratorio de Evolución, Facultad de Ciencias, Universidad de la República. Casillas 12106, PC 11400, Montevideo, Uruguay
J.A. Raga
Affiliation:
Unidad de Zoología Marina, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, PC 46071 Valencia, España
F.J. Aznar
Affiliation:
Unidad de Zoología Marina, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, PC 46071 Valencia, España
*
*Author for correspondence Fax: (+54) 2965 451543 E-mail: [email protected]

Abstract

Among Anoplura, the family Echinophthiriidae includes species that infest pinnipeds and otters. Previous evidence obtained from pinnipeds infested by echinophthiriids, specifically from seals, indicates that flippers are the preferred infestation sites, while lice from fur seals select areas in the pelage. We studied habitat selection of Antarctophthirus microchir on South American sea lion pups (Otaria flavescens Shaw, 1800) from Patagonia, Argentina, during the austral summer of 2009. We found a clear pattern of habitat selection: eggs are laid on the dorsal surface; nymphs 1 hatch there and then migrate to the belly, where they develop into adults and copulate; and then ovigerous females return to the dorsal surface. On the one hand, nymphs 1 are characterised by their low locomotory ability; therefore, the fact that they migrate as soon as they hatch suggests a clear pressure leading to microhabitat restriction. On the other hand, the described pattern of microhabitat selection seems to respond to the physiological requirements of each stage, which vary according to the physiological process considered, e.g. oviposition, morphogenesis, hatching and development. Accordingly, it appears that A. microchir would prefer the host's ventral area for development and copulation and the dorsal area for oviposition. However, the causes of this pattern are not clear, and many factors could be involved. Considering that sea lion pups periodically soak at high tides, and that prolonged immersion and very high humidity are known to be lethal for lice eggs, selecting the dorsal area would be advantageous for oviposition because it dries much faster. Furthermore, because humidity should be retained for longer periods on the ventral surface of the pup, wetter conditions on the sea lion would prevent desiccation of the nymphs in the very arid environment where O. flavescens breeds.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aznar, F.J., Leonardi, M.S., Berón-Vera, B., Vales, D.G., Ameghino, S., Raga, J.A. & Crespo, E.A. (2009) Population dynamics of Antarctophthirus microchir (Anoplura: Echinophthiriidae) in pups from South American sea lion, Otaria flavescens, in northern Patagonia. Parasitology 136, 293303.CrossRefGoogle ScholarPubMed
Berta, A. (2006) Musculoskeletal system and locomotion. pp. 165212in Berta, A., Sumich, J.L. & Kovacs, K.M. (Eds) Marine Mammals: Evolutionary Biology. San Diego, CA, USA, Academic Press.CrossRefGoogle Scholar
Bush, A.O., Fernández, J.C., Esch, G.W. & Seed, J.R. (2001) Parasitism: The Diversity and Ecology of Animal Parasites. Cambridge, UK, Cambridge University Press.Google Scholar
Campagna, C. & Le Boeuf, B.J. (1988) Thermoregulatory behaviour of Southern sea lions and its effect on mating strategies. Behaviour 107, 7290.Google Scholar
Conover, W.J. (1999) Practical Nonparametric Statistics. 3rd edn.New York, USA, John Wiley and Sons.Google Scholar
Durden, L.A. & Musser, G.G. (1994) The sucking lice (Insecta, Anoplura) of the world: a taxonomic checklist with records of mammalian hosts and geographical distributions. Bulletin of the American Museum of Natural History 218, 190.Google Scholar
Hinton, H.E. (1976) Respiratory adaptations of marine insects. pp. 4378in Cheng, L. (Ed.) Marine Insects. New York, USA, American Elsevier Publishing Company, Inc.Google Scholar
Kim, K.C. (1972) Louse populations of the Northern fur seal (Callorhinus ursinus). The American Journal of Veterinary Research 33, 20272036.Google ScholarPubMed
Kim, K.C. (1975) Ecology and morphological adaptation of the sucking lice (Anoplura, Echinophthiriidae) on the Northern fur seal. Rapport et Procès verbaux des Réunions du conseil Permanent International pour l´Exploration de la Mer 169, 504515.Google Scholar
Kim, K.C. (1985) Coevolution of Parasitic Arthropods and Mammals. New York, USA, John Wiley & Sons.Google Scholar
King, J.E. (1983) Seals of the World. Oxford, UK, Oxford University Press.Google Scholar
Leonardi, M.S., Crespo, E.A., Raga, J.A. & Fernández, M. (2009) Redescription of Antarctophthirus microchir, Trouessart & Neumman 1888 (Anoplura: Echinophthiriidae) from South American sea lion, Otaria flavescens, from Patagonia, Argentina. Journal of Parasitology 95, 10861092.CrossRefGoogle Scholar
Mehlhorn, B., Mehlhorn, H. & Plötz, J. (2002) Light and scanning electron microscopical study on Antarctophthirus ogmorhini lice from the Antarctic seal Leptonychotes weddellii. Parasitology Research 88, 651660.CrossRefGoogle Scholar
Mougabure Cueto, G., Zerba, E. & Picollo, M.I. (2006) Embryonic development of human lice: rearing conditions and susceptibility to spinosad. Memorias del Instituto Oswaldo Cruz 101, 257261.CrossRefGoogle Scholar
Mostman Liwanag, H.E. (2008) Fur versus blubber: a comparative look at marine mammal insulation and its metabolic and behavioral consequences. PhD thesis, University of California, Santa Cruz, CA, USA.Google Scholar
Moyer, B.R., Brown, D.M. & Clayton, D.H. (2002) Low humidity reduces ectoparasite pressure: Implications for host life history evolution. Oikos 97, 223228.CrossRefGoogle Scholar
Murray, M.D. (1955) Infestation of sheep with the face louse (Linognathus ovillus). Australian Veterinary Journal 31, 2226.CrossRefGoogle Scholar
Murray, M.D. (1957a) The distribution of the eggs of Damalinia equi (Denny) and Haematopinus asini (L) on the horse. Australian Journal of Zoology 5, 183187.CrossRefGoogle Scholar
Murray, M.D. (1957b) The distribution of the eggs of Mammalian Lice on their hosts. III. The distribution of the eggs of Damalinia ovis (L) on the sheep. Australian Journal of Zoology 5, 173182.CrossRefGoogle Scholar
Murray, M.D. (1957c) The distribution of eggs of mammalian lice on their hosts. II. Analysis of the oviposition behaviour of Damalinia ovis (L.). Australian Journal of Zoology 5, 1929.CrossRefGoogle Scholar
Murray, M.D. (1957d) The distribution of the eggs of mammalian lice on their hosts. I. Description of the oviposition behaviour. Australian Journal of Zoology 5, 1318.CrossRefGoogle Scholar
Murray, M.D. (1960) The ecology of lice on sheep. II. The influence of temperature and humidity on the development and hatching of the eggs of Damalinia ovis (L.). Australian Journal of Zoology 8, 357362.CrossRefGoogle Scholar
Murray, M.D. (1976) Insect parasite of marine bird and mammals. pp. 7996in Cheng, L. (Ed.) Insects Parasites of Marine Birds and Mammals. Amsterdam, The Netherlands, Amsterdam Publishing Company.Google Scholar
Murray, M.D. (1987) Arthropods: the pelage of mammals as an environment. International Journal of Parasitology 17, 191195.CrossRefGoogle ScholarPubMed
Murray, M.D. & Nicholls, D.G. (1965) Studies on the ectoparasites of seals and penguins. I. The ecology of the louse Lepidophthirus macrorhini Enderlein on the southern elephant seal, Mirounga leonina (L.). Australian Journal of Zoology 13, 437454.CrossRefGoogle Scholar
Murray, M.D., Smith, M.S.R. & Soucek, Z. (1965) Studies on the ectoparasites of seals and penguins. II. The ecology of the louse Antarctophthirus ogmorhini Enderlein on the Weddell seal, Leptonychotes weddelli Lesson. Australian Journal of Zoology 13, 761771.CrossRefGoogle Scholar
Reiczigel, J. (2003) Confidence intervals for the binomial parameter: some new considerations. Statistics in Medicine 22, 611621.CrossRefGoogle ScholarPubMed
Reiczigel, J. & Rózsa, L. (2005) Quantitative Parasitology 3.0. Budapest. Distributed by the authors.Google Scholar
Rózsa, L., Reiczigel, J. & Majoros, G. (2000) Quantifying parasites in samples of hosts. Journal of Parasitology 86, 228232.CrossRefGoogle ScholarPubMed
Yorio, P., Bertellotti, M. & Quintana, F. (1995) Preference for covered nest sites and breeding success in Kelp Gulls Larus dominicanus. Marine Ornithology 23, 121128.Google Scholar