Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T18:52:09.727Z Has data issue: false hasContentIssue false

Laboratory observations on the bionomics of Aedes fluviatilis (Lutz) (Diptera: Culicidae)

Published online by Cambridge University Press:  10 July 2009

R. A. G. B. Cônsoli
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte & Centro de Pesquisas “René Rachou”, Fundação do Instituto Oswaldo Cruz, Caixa Postal 1743, 30.000 Belo Horizonte, Minas Gerais, Brazil.
Paul Williams
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte & Centro de Pesquisas “René Rachou”, Fundação do Instituto Oswaldo Cruz, Caixa Postal 1743, 30.000 Belo Horizonte, Minas Gerais, Brazil.

Abstract

A laboratory colony of Aedes fluviatilis (Lutz) was established in ambient conditions in Brazil in which temperature varied from 22 to 31°C and relative humidity from 61 to 73%. Females laid eggs 3–13 days (mean 5·6 days) after a blood-meal and produced, on average, 64·3 eggs per batch. Eggs were usually deposited directly on the surface of water and preferentially on water that had previously contained fourth-instar larvae. The eggs proved to have little resistance to desiccation, hatching rates being reduced when eggs were kept on dry filter paper for only 1–3 days. Hatching took place following the detachment of a cap-like portion of the anterior end or through an irregular longitudinal split along the side of the egg. In different experiments, about 10–20% of eggs failed to hatch. Eggs usually hatched 2 days after oviposition. The average length of larval life was 10·2 days, and the highest proportion of larvae pupated on day 9. The duration of the successive immature stages increased geometrically with age. Mortality was 1–2% in each of the first 3 larval instars but rose to about 10% in the fourth. In the larval stage, males developed more rapidly than females. Crowding lengthened the duration of the larval stage, reduced the numbers surviving to pupate and resulted in a disparate sex ratio with emergent males much more abundant than females. Pupation occurred throughout the day and night with a slight peak at 05.00–06.00 h. The pupal stage lasted 1–3 days, usually 2 days, and was the same in both sexes.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anduze, P. J. (1941).Anotaciones sobre los zancudos del Estado Carabobo, Venezuela (Diptera: Culicidae).—Revta Sanid. Asist. soc., Caracas 6, 491508.Google Scholar
Bonne-Wepster, J. & Brug, S. L. (1932). The subgenus Stegomyia in Netherland India.— Geneesk. Tijdschr. Ned. Ind. Byblad. 2, 39119.Google Scholar
Christophers, S. R. (1960). Aëdes aegypti (L.). The yellow fever mosquito, its life, history, bionomics and structure.—739 pp. London, Cambridge University Press.Google Scholar
Cônsoli, R. A. G. B. (1976). Estudos sobre a biologia do Aedes (Finlaya) fluviatilis (Lutz, 1904) em laboratório.—Thesis, Univ. Minas Gerais, Belo Horizonte.Google Scholar
Cônsoli, R. A. G. B. & Espinola, H. N. (1973). Possíveis fatores químicos na àgua que influenciam as femeas de Culex pipiens fatigans para oviposição.—Revta Patol. trop. 1, 4954.Google Scholar
Davis, N. C. & Shannon, R. C. (1931). Studies on yellow fever in South America. Attempts to transmit the virus with certain aedine and sabethine mosquitoes and triatomas (Hemiptera).—Amer. J. trop. Med. 11, 2129.CrossRefGoogle Scholar
De Meillon, B. & Thomas, V. (1966). Culex pipiens fatigans Wied., pp. 101114 in Smith, C. N. (Ed.) Insect colonization and mass production.—618 pp. New York & London, Academic Press.CrossRefGoogle Scholar
Forattini, O. P. (1965). Entomologia medica, volume 2.—506 pp. São Paulo, Editoria da Universidade de São Paulo.Google Scholar
Francis, E. (1907). Observation on the cycle of Stegomyia calopus.—Publ. Hlth Rep., Wash. 22, 381383.Google Scholar
Gahan, J. B. (1966). Anopheles quadrimaculatus Say pp. 85100 in Smith, C. N. (Ed.). Insect colonization and mass production.—618 pp. New York & London, Academic Press.CrossRefGoogle Scholar
Gjullin, C. M.Yates, W. W. & Stage, H. H. (1950). Studies on Aedes vexans (Meig.) and Aedes sticticus (Meig.), flood-water mosquitoes, in the lower Columbia River Valley.—Ann. ent. Soc. Amer. 43, 262275.CrossRefGoogle Scholar
Goeldi, E. A. (1905). Os mosquitos no Pará.—Mems Mus. Goeldi 4, 1154.Google Scholar
Haddow, A. J., Gillett, J. D. & Corbet, P. S. (1959). Laboratory observations on pupation and emergence in the mosquito Aëdes (Stegomyia) aegypti (Linnaeus).—Ann. trop. Med. Parasit. 53, 123131.CrossRefGoogle ScholarPubMed
Howard, L. O., Dyar, H. G. & Knab, F. (19121917). The mosquitoes of North and Central America and the West Indies, Vols. 1–4.—Washington, Carnegie Institute.Google Scholar
Howlett, F. M. (1913). Stegomyia fasciata, p. 205in Proceedings 3rd Meeting General Malaria Committee, Madras, 1912.—289 pp. Simla, Govt. Press.Google Scholar
Hudson, B. N. A. (1967). A chemical factor that stimulates oviposition by Culex tarsalis Coquillet (Diptera: Culicidae).—Anim. Behav. 33, 478492.Google Scholar
Ikeshoji, T. & Mulla, M. S. (1970). Overcrowding factors of mosquito larvae.—J. econ. Ent. 63, 9096.CrossRefGoogle ScholarPubMed
Macfie, J. W. S. (1917). Morphological changes observed during the development of the larvae of Stegomyia fasciata.—Bull. ent. Res. 7, 297307.CrossRefGoogle Scholar
Marchaux, E., Salimbeni, A. & Simond, P. L. (1903). La fievre jaune. Rapports de la Mission française.—Ann. Inst. Pasteur 17, 665731.Google Scholar
Newstead, R. & Thomas, H. W. (1910). The mosquitoes of the Amazon Region.—Ann. trop. Med. Parasit. 4, 141149.CrossRefGoogle Scholar
Rosay, B. (1959). Gross external morphology of embryos of Culex tarsalis Coquillett (Diptera: Culicidae).—Ann. ent. Soc. Amer. 52, 481484.CrossRefGoogle Scholar
Senevet, G. & Abonnenc, E. (1939). Les moustiques de Ia Guyana—4. Le genre Aedes.— Arq. Inst. Pasteur Alger. 17, 467480.Google Scholar
Shannon, R. C. & Putnam, P. (1934). The biology of Stegomyia under laboratory conditions. I. The analysis of factors which influence larval development.—Proc. ent. Soc. Wash. 36, 185216.Google Scholar
Soper, F. L., Penna, H., Cardoso, E., Serafim, J., Frobisher, M. Jr., & Pinheiro, J. (1933). Yellow fever without Aëdes aegypti. Study of a rural epidemic in the Valle do Chanaan, Espirito Santo, Brazil, 1932.—Am. J. Hyg. 18, 555587.Google Scholar
Soper, F. L. & Serafim, J. Jr.. (1933). Note on the breeding of Aedes (Taeniorhynchus) fluviatilis Lutz, in artificial water deposits.—Am. J. trop. Med. 13, 589590.CrossRefGoogle Scholar
Theobald, F. V. (1901). A monograph on the Culicidae of the world. Volume 1.—424 pp. London, British Museum (Natural History).Google Scholar