Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T17:10:41.807Z Has data issue: false hasContentIssue false

Key factors affecting the spring emergence of pea moth (Cydia nigricana)

Published online by Cambridge University Press:  17 February 2010

G. Thöming*
Affiliation:
Department of Ecological Plant Protection, Faculty of Organic Agricultural Sciences, University of Kassel, Nordbahnhofstrasse 1a, 37213Witzenhausen, Germany
H. Saucke
Affiliation:
Department of Ecological Plant Protection, Faculty of Organic Agricultural Sciences, University of Kassel, Nordbahnhofstrasse 1a, 37213Witzenhausen, Germany
*
*Author for correspondence Fax: +49 (0)5542–98 1564 E-mail: [email protected]

Abstract

The hypothesis that spring emergence of the pea moth Cydia nigricana is regulated by environmental factors, particularly photoperiod and temperature, was examined in this study. A long-term field study was conducted in two distinct pea-growing areas in Hesse and Saxony, Germany. Strong correlations between the flight phenology of pea moth in spring and air temperature, soil temperature, solar radiation and day length were demonstrated for three consecutive years. In laboratory experiments, we elucidated the interaction of different photoperiod-temperature regimes, verifying cumulative day-degree data in relation to pea moth emergence rates in the field. C. nigricana temperature sensitivity is apparently initiated by long day conditions with a critical day length of about 14 h L:D. The overall results contribute to the theory that photoperiod and temperature interact as regulatory cues for spring emergence of C. nigricana. The findings are discussed in terms of the development of predictive models and decision support systems for pea moth control.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Axelsen, J.A., Fink, R. & Kjær, C. (1997) Global solar radiation as factor controlling induction of diapause in pod midge (Dasyneura brassicae Winn.). Oecologia 111, 178182.CrossRefGoogle ScholarPubMed
Beck, S.D. (1983) Insect thermoperiodism. Annual Reviews of Entomology 28, 91–108.CrossRefGoogle Scholar
Chippendale, G.M., Reddy, A.S. & Catt, C.L. (1976) Photoperiodic and thermoperiodic interaction in the regulation of the larval diapause of Diatraea grandiosella. Journal of Insect Physiology 22, 823828.CrossRefGoogle Scholar
Cross, J.V. & Crook, D.J. (1999) Predicting spring emergence of blackcurrant leaf midge (Dasneura tetensi) from air temperature. Entomologia Experimentalis et Applicata 91, 421430.CrossRefGoogle Scholar
Danilevsky, A.S., Goryshin, N.I. & Tyshchenko, V.P. (1970) Biological rhythms in terrestrial arthropods. Annual Reviews of Entomology 15, 201244.CrossRefGoogle Scholar
Deseö, K.V. & Briolini, G. (1986) Observation on the termination of the facultative diapause in the codling moth (Cydia pomonella L., Lepidoptera: Tortricidae). Bollettino dell'Istituto di Entomologia ‘Guide Grandi’ della Università degli studi di Bologna 40, 99–110.Google Scholar
Draper, N.R. & Smith, H. (1998) Applied Regression Analysis. New York, USA, Wiley-Interscience.CrossRefGoogle Scholar
Gottwald, R. (1996) Prognose der Phänologie wichtiger Schadorganismen im Apfelanbau mit Hilfe von Temperatursummen. Gesunde Pflanzen 48, 140146.Google Scholar
Huusela-Veistola, E. & Jauhiainen, L. (2006) Expansion of cropping increases the risk of pea moth (Cydia nigricana; Lep., Tortricidae) infestation. Journal of Applied Entomology 130, 142149.CrossRefGoogle Scholar
Jostock, M. (2006) Erbsenwickler – Eein Problemschädling in Futtererbsen? Raps 2, 7781.Google Scholar
Kostal, V., Shimada, K. & Hayakawa, Y. (2000) Induction and development of winter larval diapause in a drosophilid fly, Chymomyza costata. Journal of Insect Physiology 46, 417428.CrossRefGoogle Scholar
Langenbuch, R. (1941) Zur Biologie des Erbsenwicklers. Arbeiten zur Physiologischen und Angewandten Entomologie 8, 219247.Google Scholar
Leather, S.R., Walters, K.F.A. & Bale, J.S. (1993) The Ecology of Insect Overwintering. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
Lewis, T. & Sturgeon, D.M. (1978) Early warning of egg hatching pea moth Cydia nigricana. Annals of Applied Biology 88, 199210.CrossRefGoogle Scholar
Macaulay, E.D.M., Etheridge, P., Garthwaite, D.G., Greenway, A.R., Wall, C. & Goodchild, R.E. (1985) Prediction of optimum spraying dates against pea moth, Cydia nigricana (F.), using pheromone traps and temperature measurements. Crop Protection 4, 8598.CrossRefGoogle Scholar
Nicolaisen, W. (1928) Der Erbsenwickler, Grapholita (Cydia, Laspeyresia) sp., sein Schaden und seine Bekämpfung unter Berücksichtigung der Anfälligkeit verschiedener Erbsensorten. Kühn Archiv, Halle 19, 196256.Google Scholar
Pittorf, I. & Matthes, P. (2004) Den Wickler am Wickel. dlz agrarmagazin 4, 4246.Google Scholar
Samietz, J., Graf, B., Höhn, H., Schaub, L. & Höpli, H.U. (2007) SOPRA: Schadlingsprognose im Obstbau. Schweizerische Zeitschrift für Obst- und Weinbau 7, 9–12.Google Scholar
Sarwar, S.L. (1973) Untersuchungen zur Biologie und Bekämpfung des Erbsenwicklers, Laspeyresia nigricana Steph. Dissertation, Karl-Marx-Universität, Leipzig, Germany.Google Scholar
SAS Institute (1999) PROC User's Manual, Cary, NC, USA, SAS Institute Inc.Google Scholar
Sokal, R.R. & Rohlf, F.J. (1995) Biometry: the principles and practice of statistics in biological research. New York, USA, W.H. Freeman.Google Scholar
Son, Y., Lee, J.H. & Chung, Y.J. (2007) Temperature-dependent post-diapause development and prediction of spring emergence of pine needle gall midge (Dipt., Cecidomyiidae). Journal of Applied Entomology 131, 674683.CrossRefGoogle Scholar
Takeda, M. & Skopik, S.D. (1997) Photoperiodic time measurement and related physiological mechanisms in insect and mites. Annual Reviews of Entomology 42, 323349.CrossRefGoogle ScholarPubMed
Tauber, M.J. & Tauber, C.A. (1976) Insect seasonality: diapause maintenance, termination, and postdiapause development. Annual Reviews of Entomology 21, 81–107.CrossRefGoogle Scholar
Trapman, M., Helsen, H. & Polfliet, M. (2008) Development of a dynamic population model as a decision support system for Codling Moth (Cydia pomonella L.) management. pp. 247251 in Proceedings of Ecofruit – the 13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing. 18–20 February 2008, Weinsberg, Germany.Google Scholar
Watari, Y. (2005) Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antique: the change of rhythmicity. Journal of Insect Physiology 51, 1116.CrossRefGoogle Scholar
Wheatly, G.A. & Dunn, J.A. (1962) The influence of diapause on the time of emergence of pea moth, Laspeyresia nigricana (Steph.). Annals of Applied Biology 50, 609611.CrossRefGoogle Scholar
Wright, D.W. & Geering, Q.A. (1948) The biology and control of the pea moth Laspeyresia nigricana Stephh. Bulletin for Entomological Research 39, 5784.CrossRefGoogle Scholar
Xue, F.S., Zhu, X.F. & Shao, Z.Y. (2001) Control of summer and winter diapause in the leaf-mining fly Pegomyia bicolour Wiedemann (Dipt., Anthomyiidae). Journal of Applied Entomology 125, 181187.CrossRefGoogle Scholar
Xue, F., Spieth, H.R., Aiqing, L. & Ai, H. (2002) The role of photoperiod and temperature in determination of summer and winter diapause in cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). Journal of Insect Physiology 48, 279286.CrossRefGoogle Scholar