Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T03:50:23.924Z Has data issue: false hasContentIssue false

Kampimodromus aberrans (Acari: Phytoseiidae) from the USA: morphological and molecular assessment of its density

Published online by Cambridge University Press:  13 December 2007

M.-S. Tixier*
Affiliation:
Ecole Nationale Supérieure Agronomique/Institut National de la Recherche Agronomique, Unité d'Ecologie Animale et de Zoologie Agricole, Laboratoire d'Acarologie, 2, Place Pierre Viala, 34060 Montpellier cedex 01, France
S. Kreiter
Affiliation:
Ecole Nationale Supérieure Agronomique/Institut National de la Recherche Agronomique, Unité d'Ecologie Animale et de Zoologie Agricole, Laboratoire d'Acarologie, 2, Place Pierre Viala, 34060 Montpellier cedex 01, France
B.A. Croft
Affiliation:
Oregon State University, Department of Entomology, Corvallis, OR 97331-2907, USA
B. Cheval
Affiliation:
Ecole Nationale Supérieure Agronomique/Institut National de la Recherche Agronomique, Unité d'Ecologie Animale et de Zoologie Agricole, Laboratoire d'Acarologie, 2, Place Pierre Viala, 34060 Montpellier cedex 01, France
*
*Author for correspondence Fax: 00 33 (0) 499612393 E-mail: [email protected]

Abstract

Morphological measurements and a mitochondrial molecular marker (COI) were used to identity specimens reported as Kampimodromus aberrans on hazelnut in the USA. Several species and populations of this genus were studied to assist with identification. Both data types showed that specimens from the USA differed from K. aberrans from other regions. USA specimens seem to belong to the same species as Kampimodromus specimens from France on hazelnut. These mites were morphologically similar to Kampimodromus coryli and K. corylosus, which according to the original descriptions, are distinguished by the presence or absence of a tooth on the movable digit of the chelicera, with K. coryli having one tooth and K. corylosus none. As chelicerae of Kampimodromus from hazelnut in the USA and France are toothless, they are assigned to the species K. corylosus. Studies showed that morphological characters traditionally used to identify Kampimodromus species, such as setal length, are of less value than other characters that are difficult to observe, such as the numbers of solenostomes and the presence of teeth on the movable digit of the chelicerae. Some synonyms are discussed.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D.L. & Trueman, J.W.H. (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental and Applied Acarology 24, 165189.CrossRefGoogle ScholarPubMed
Athias-Henriot, C. (1969) Notes sur la morphologie externe des Gamasides (acariens Anactinotriches). Acarologia 11(4), 609629.Google Scholar
Athias-Henriot, C. (1971) La divergence néotaxique des Gamasides (Arachnides). Bulletin Scientifique de Bourgogne 28, 94106.Google Scholar
Athias-Henriot, C. (1975) Nouvelles notes sur les Amblyseiini. II. Le relevé organotaxique de la face dorsale adulte (Gamasides proto-adéniques, Phytoseiidae). Acarologia 17 (1), 2029.Google Scholar
Barret, D. & Kreiter, S. (1992) Rôle des relations morphométriques dans la coopération entre certaines plantes et les acariens prédateurs Phytoseiidae. Bulletin de la Société d'Ecophysiologie 17, 129143.Google Scholar
Camporese, P. & Duso, C. (1996) Different colonization patterns of phytophagous mites on three grape varieties: a case study. Experimental and Applied Acarology 20, 122.CrossRefGoogle Scholar
Cargnus, E., Zandigiacomo, P. & Girolami, V. (2002) Electrophoretic study of three species of the genus Kampimodromus Nesbitt (Acari: Phytoseiidae). Redia 85, 101110.Google Scholar
Chant, D.A. & McMurtry, J.A. (1994) A review of the subfamilies Phytoseiinae and Typhlodrominae (Acari: Phytoseiidae). International Journal of Acarology 20(4), 223310.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2003) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae): Part II. The tribe Kampimodromini Kolodochka. International Journal of Acarology 29, 179224.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2004a) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part III. The tribe Amblyseiini Wainstein, subtribe Amblyseiina, N. subtribe. International Journal of Acarology 30, 171228.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2004b) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part IV. The tribe Amblyseiini Wainstein, subtribe Arrenoseiina Chant and McMurtry. International Journal of Acarology 30, 291312.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2005a) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part V. Tribe Amblyseiini, subtribe Proprioseiopsina Chant and McMurtry. International Journal of Acarology 31, 322.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2005b) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part VI. The tribe Euseiini N. tribe, subtribes Typhlodromalina, N. subtribe, Euseiina, N. subtribe and Ricoseiina, N. subtribe. International Journal of Acarology 31, 187224.CrossRefGoogle Scholar
Clustal W® (1997) W server at the EBI embnet.news. vol. 4.2, 1997. http://www.ebi.ac.uk/embnet.news/vol4_3/clustalw1.htmlGoogle Scholar
Cruickshank, R.H. (2002) Molecular markers for the phylogenetics of mites and ticks. Systematic and Applied Acarology 7, 314.CrossRefGoogle Scholar
Duso, C. (1992) Role of Amblyseius aberrans (Oudemans), Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) in vineyards. III. Influence of variety characteristics on the success of A. aberrans and T. pyri releases. Journal of Applied Entomology 114, 455462.CrossRefGoogle Scholar
Duso, C., Torresan, L. & Vettorazzo, E. (1993) La vegetazione spontanea come riserva di ausiliari: considerazioni sulla diffusione degli Acari Fitoseidi (Acari: Phytoseiidae) in un vigneto e sulle piante spontanee contigue. Bolletino de Zoologia Agraria e Bachicoltura 25, 183203.Google Scholar
Evans, J.D. & Lopez, D.L. (2002) Complete mitochondrial DNA sequence of the important honey bee pest, Varroa destructor (Acari: Varroidae). Experimental and Applied Acarology 27, 6978.CrossRefGoogle ScholarPubMed
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis.Google Scholar
Harrison, R.G. (1989) Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Tree 4(1), 611.Google ScholarPubMed
Higgins, D., Thompson, J. & Gibson, T. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.Google Scholar
Hinomoto, N., Osakabe, Mh., Gotoh, T. & Takafuji, A. (2001) Phylogenetic analysis of green and red forms of the two spotted spider mite, Tetranychus urticae Koch in Japan based on mitochondrial cytochrome oxidase subunit I sequences. Applied Entomology and Zoology 36, 459464.CrossRefGoogle Scholar
Kolodochka, L.A. (2003) A new species of the genus Kampimodromus (Parasitiformes, Phytoseiidae) from Ukraine and Moldova. Acarina 11(1), 5155.Google Scholar
Kolodochka, L.A. (2005) A new species of the genus Kampimodromus (Parasitiformes, Phytoseiidae) from Crimea. Acarina 13(1), 2327.Google Scholar
Krantz, G.W. (1973) Dissemination of Kampimodromus aberrans by the filbert aphid. Journal of Economic Entomology 66 (2), 575576.CrossRefGoogle Scholar
Kreiter, S., Tixier, M.-S., Auger, P. & Weber, M. (2000) Phytoseiid mites of vineyards in France. Acarologia 41, 7594.Google Scholar
Kreiter, S., Tixier, M.-S., Croft, B.A., Auger, P. & Barret, D. (2002) Plants and leaf characteristics influencing the predaceous mite, Kampimodromus aberrans (Oudemans), in habitats surrounding vineyards (Acari: Phytoseiidae). Environmental Entomology 31, 648660.CrossRefGoogle Scholar
Kumar, S., Tamura, K. & Nei, M. (2004) Intergrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment. Breifings in Bioinformatics 5, 150163.CrossRefGoogle Scholar
Loxdale, H.D. & Lushai, G. (1998) Molecular markers in entomology. Bulletin of Entomological Research 88, 577600.CrossRefGoogle Scholar
McMurtry, J.A. & Croft, B.A. (1997) Life-styles of phytoseiid mites and their roles in biological control. Annual Review of Entomology 42, 291321.CrossRefGoogle ScholarPubMed
Meshkov, Y.I. (1999) Contribution to phytoseiid fauna (Parasitiformes, Phytoseiidae) of Moscow District. Zoologicheskii Zhurnal 78(4), 426431.Google Scholar
Moraes, G.J., McMurtry, J.A., Denmark, H.A. & Campos, C.B. (2004) A revised catalog of the mite family Phytoseiidae. Zootaxa 434, 1494.CrossRefGoogle Scholar
Navajas, M. & Fenton, B. (2000) The application of molecular markers in the study of diversity in acarology: a review. Experimental and Applied Acarology 24(10/11), 751774.CrossRefGoogle Scholar
Navajas, M., Gutierrez, J., Bonato, O., Bolland, H.R. & Manpagou-Divasse, S. (1994) Intraspecific diversity of the cassava green mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross breeding. Experimental and Applied Acarology 18, 351360.CrossRefGoogle ScholarPubMed
Navajas, M., Guttierrez, J. & Lagnel, J. (1996) Mitochondrial cytochrome oxidase I in tetranychid mites: a comparison between molecular phylogeny and changes of morphological and life history traits. Bulletin of Entomological Research 86, 407417.CrossRefGoogle Scholar
Navajas, M., Gutierrez, J., Lagnel, J., Fauvel, G. & Gotoh, T. (1999) DNA sequences and cross-breeding esperiments in the hawthorn spider mite Amphitetranychus viennensis reveal high genetic differentiation between Japanese and French populations. Entomologia Experimentalis and Applicata 90, 113122.CrossRefGoogle Scholar
Nesbitt, H.H.J. (1951). A taxonomic study of the Phytoseiinae (family Laelaptidae) predaceous upon Tetranychidae of economic importance. Zoologische Verhandelingen 12, 197.Google Scholar
Otto, J.C. & Wilson, K.J. (2001) Assessment of the usefulness of ribosomal 18s and mitochondrial COI sequences in prostigmata phylogeny. pp. 100111. in Halliday, R.B., Walter, D.E., Proctor, H.C., Norton, R.A. & Colloff, J. (Eds) Proceedings: 10th International Congress of Acarology. 5–10 July 1998, Melbourne, Australia, CSIRO Publishing.Google Scholar
Ragusa, S. & Tsolakis, H. (1994) Revision of the genus KampimodromusNesbitt, 1951 (Parasitiformes, Phytoseiidae) with a description of a new species. Acarologia 35, 305322.Google Scholar
Roehrdanz, R.L. & Degrugillier, M.E. (1998) Long sections of mitochondrial DNA amplified from fourteen orders of insects using conserved polymerase chain reaction primers. Annals of the Entomology Society of America 91(6), 771778.CrossRefGoogle Scholar
Rowell, H.J., Chant, D.A. & Hansell, R.I.C. (1978) The determination of setal homologies and setal patterns on the dorsal shield in the family Phytoseiidae. Canadian Entomologist 110, 859876.CrossRefGoogle Scholar
Salomone, N., Emerson, B.C., Hewitt, M. & Bernini, F. (2002) Phylogenetic relationships among the Canary Islands Stegnacaridae (Acari, Oribatida) inferred from mitochondrial DNA sequence data. Molecular Ecology 11, 7989.CrossRefGoogle ScholarPubMed
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomology Society of America 87(6), 651701.CrossRefGoogle Scholar
Statistica® (2001) Version 6.0. Statsoft Inc. USA.Google Scholar
Tixier, M.-S., Kreiter, S. & Auger, P. (2000) Colonization of vineyards by phytoseiid mites: their dispersal patterns in the plot and their fate. Experimental and Applied Acarology 24, 191211.CrossRefGoogle ScholarPubMed
Tixier, M.-S., Kreiter, S., Cheval, B. & Auger, P. (2003) Morphometric variation between populations of Kampimodromus aberrans. Implications for the taxonomy of the genus. Invertebrate Systematic 17(2), 349358.CrossRefGoogle Scholar
Tixier, M.-S., Kreiter, S., Ferragut, F. & Cheval, B. (2006) Morphological and molecular evidences for the synonymy of Kampimodromus hmiminai McMurtry & Bounfour and K. adrianae Ferragut & Pena-Estevez (Acari: Phytoseiidae). Canadian Journal of Zoology, 84(8), 12161222.CrossRefGoogle Scholar
Toda, S., Osakabe, Mh. & Komazaki, S. (2000) Interspecific diversity of mitochondrial COI sequences in Japanese Panonychus species. Experimental and Applied Acarology 24, 821829.CrossRefGoogle ScholarPubMed
Toda, S., Osakabe, Mh. & Komazaki, S. (2001) Detection of a point mutation in mitochondrial COI gene of Panonychus citri using PCR amplification of specific alleles. Journal of Acarology Society of Japan 10, 3741.Google Scholar
Walter, D.E. & Campbell, N.J.H. (2003) Exotic vs. Endemic biocontrol agents: would the real Stratiolaelaps miles, please stand up? Biological Control 26(3), 253269.CrossRefGoogle Scholar