Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T13:02:19.623Z Has data issue: false hasContentIssue false

Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae)

Published online by Cambridge University Press:  07 May 2009

R. Buitenhuis
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, 2585 County Rd 20, Harrow, ON, N0R 1G0, Canada
L. Shipp*
Affiliation:
Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, 2585 County Rd 20, Harrow, ON, N0R 1G0, Canada
C. Scott-Dupree
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
*
*Author for correspondence Fax: 519-738-2929 E-mail: [email protected]

Abstract

The relationships between the predatory mites, Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae), and their prey, western flower thrips (Frankliniella occidentalis Pergande) (Thysanoptera: Thripidae), were investigated to determine the effects of predation on intra-guild or extra-guild prey and predator preference. Life history characteristics of both predatory mites were measured when fed eggs and larvae of the other predator species and compared to data obtained when the predators were fed thrips larvae. In addition, choice tests were conducted to determine if the predators had a preference for different prey or if they were indiscriminate predators. Amblyseius swirskii appears to be an important intra-guild predator of N. cucumeris juveniles because of a high predation rate and a preference for N. cucumeris juveniles over thrips. Neoseiulus cucumeris is also an intra-guild predator of A. swirskii juveniles; however, it has a lower predation rate than A. swirskii. Contrary to intra-guild predation theory, intra-guild prey was an equally good or better food source than thrips (extra-guild prey) for both predators, based on high oviposition rates and fast development times. The results of this study indicate a high potential for negative interactions between A. swirskii and N. cucumeris when used together in biological control of thrips.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakker, F.M. & Sabelis, M.W. (1989) How larvae of Thrips tabaci reduce the attack succes of phytoseiid predators. Entomologia Experimentalis et Applicata 50, 4751.CrossRefGoogle Scholar
Croft, B.A. & Croft, M.B. (1996) Intra- and interspecific predation among adult female Phytoseiid mites (Acari: Phytoseiidae): Effects on survival and reproduction. Environmental Entomology 25, 853858.CrossRefGoogle Scholar
Croft, B.A., Kim, S.S. & Kim, D.I. (1996) Intra and interspecific predation on four life stage groups by adult females of Metaseiulus occidentalis, Typhlodromus pyri, Neoseiulus fallacis and Amblyseius andersoni. Experimental and Applied Acarology 20, 435444.CrossRefGoogle Scholar
Denno, R.F. & Finke, D.L. (2006) Multiple predator interactions and food-web connectance: implications for biological control. pp. 4570 in Brodeur, J. & Boivin, G. (Eds) Trophic and Guild Interactions in Biological Control. Dordrecht, The Netherlands, Springer.CrossRefGoogle Scholar
Finke, D.L. & Denno, R.F. (2003) Intra-guild interaction relaxes natural enemy impacts on herbivore populations. Ecological Entomology 28, 6773.CrossRefGoogle Scholar
Gnanvossou, D., Hanna, R. & Dicke, M. (2003) Infochemical-mediated intraguild interactions among three predatory mites on cassava plants. Oecologia 135, 8490.CrossRefGoogle ScholarPubMed
Helle, W. & Sabelis, M.W. (1985) Spider Mites, their Biology, Natural Enemies and Control. Vol 1b, Amsterdam, The Netherlands, Elsevier.Google Scholar
Janssen, A., Pallini, A., Venzon, M. & Sabelis, M.W. (1998) Behaviour and indirect interactions in food webs of plant-inhabiting arthropods. Experimental and Applied Acarology 22, 497521.CrossRefGoogle Scholar
Janssen, A., Sabelis, M.W., Magalhães, S., Montserrat, M. & van der Hammen, T. (2007) Habitat structure affects intraguild predation. Ecology 88, 27132719.CrossRefGoogle ScholarPubMed
McMurtry, J.A. & Croft, B.A. (1997) Life-styles of phytoseiid mites and their roles in biological control. Annual Review of Entomology 42, 291321.CrossRefGoogle ScholarPubMed
Messelink, G., Van Steenpaal, S. & van Wensveen, W. (2005) Typhlodromips swirskii (Athias-Henriot) (Acari: Phytoseiidae): a new predator for thrips control in greenhouse cucumber. IOBC Bulletin 28, 183186.Google Scholar
Messelink, G.J., Van Steenpaal, S.E.F. & Ramakers, P.M.J. (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. BioControl 51, 753768.CrossRefGoogle Scholar
Messelink, G., van Maanen, R., Van Steenpaal, S. & Janssen, A. (2008) Biological control of thrips and whiteflies by a shared predator: Two pests are better than one. Biological Control 44, 372379.CrossRefGoogle Scholar
Meszaros, A., Tixier, M.-S., Cheval, B., Barbar, Z. & Kreiter, S. (2007) Cannibalism and intraguild predation in Typhlodromus exhilaratus and T. phialatus (Acari: Phytoseiidae) under laboratory conditions. Experimental and Applied Acarology 41, 3743.CrossRefGoogle Scholar
Montserrat, M., Janssen, A., Magalhaes, S. & Sabelis, M.W. (2006) To be an intra-guild predator or a cannibal: Is prey quality decisive? Ecological Entomology 31, 430436.CrossRefGoogle Scholar
Nomikou, M., Janssen, A., Schraag, R. & Sabelis, M.W. (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Experimental and Applied Acarology 25, 271291.CrossRefGoogle ScholarPubMed
Onzo, A., Hanna, R., Negloh, K., Toko, M. & Sabelis, M.W. (2005) Biological control of cassava green mite with exotic and indigenous phytoseiid predators – effects of intraguild predation and supplementary food. Biological Control 33, 143152.CrossRefGoogle Scholar
Overmeer, W.P.J. (1985) Rearing and Handling. pp. 161170 in Helle, W. & Sabelis, M.W. (Eds) Spider Mites: Their Biology, Natural Enemies and Control. Amsterdam, The Netherlands, Elseviers.Google Scholar
Polis, G.A. (1981) The evolution and dynamics of intraspecific predation. Annual Review of Ecology and Systematics 12, 225251.CrossRefGoogle Scholar
Polis, G.A. & Holt, R.D. (1992) Intraguild predation: the dynamics of complex trophic interactions. Trends in Ecology and Evolution 7, 151154.CrossRefGoogle ScholarPubMed
Polis, G.A., Myers, C.A. & Holt, R.D. (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annual Review of Ecology and Systematics 20, 297330.CrossRefGoogle Scholar
Prasad, R.P. & Snyder, W.E. (2004) Predator inference limits fly egg biological control by a guild og ground-active beetles. Biological Control 31, 428437.CrossRefGoogle Scholar
Rasmy, A.H., Abou El-Ella, G.M. & Hussein, H.E. (2004) Cannibalism and interspecific predation of the phytoseiid mite, Amblyseius swirskii. Journal of Pest Science 77, 2325.CrossRefGoogle Scholar
Robb, K.L. (1989) Analysis of Frankliniella occidentalis (Pergande) as a pest of floricultural crops in California. PhD thesis, University of California, Riverside, California, USA.Google Scholar
Rosenheim, J.A. & Harmon, J.P. (2006) The influence of intraguild predation on the suppression of a shared prey population: an empirical reassessment. pp. 120 in Brodeur, J. & Boivin, G. (Eds) Trophic and Guild Interactions in Biological Control. Dordrecht, The Netherlands, Springer.Google Scholar
Rosenheim, J.A., Kaya, H.K., Ehler, L.E., Marois, J.J. & Jaffee, B.A. (1995) Intra-guild predation among biological-control agents: theory and evidence. Biological Control 5, 303335.CrossRefGoogle Scholar
Sabelis, M.W. & van Rijn, P.C.J. (1997) Predation by insects and mites. pp. 259354 in Lewis, T. (Ed) Thrips as Crop Pests. New York, USA, CAB International.Google Scholar
Schausberger, P. (1997) Inter- and intraspecific predation on immatures by adult females in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari, Phytoseiidae). Experimental and Applied Acarology 21, 131150.CrossRefGoogle Scholar
Schausberger, P. (1999) Juvenile survival and development in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari: Phytoseiidae) feeding on conspecific and heterospecific immatures. Experimental and Applied Acarology 23, 297307.CrossRefGoogle Scholar
Schausberger, P. & Croft, B.A. (1999) Predation on and discrimination between con- and heterospecific eggs among specialist and generalist phytoseiid mites (Acari: Phytoseiidae). Environmental Entomology 28, 523528.CrossRefGoogle Scholar
Schausberger, P. & Croft, B.A. (2000) Cannibalism and intraguild predation among phytoseiid mites: are aggressiveness and prey preference related to diet specialization? Experimental and Applied Acarology 24, 709725.CrossRefGoogle ScholarPubMed
Seelmann, L., Auer, A., Hoffmann, D. & Schausberger, P. (2007) Leaf pubescence mediates intraguild predation between predatory mites. Oikos 116, 807817.CrossRefGoogle Scholar
Symondson, W.O.C., Sunderland, K.D. & Greenstone, M.H. (2002) Can generalist predators be effective biocontrol agents? Annual Review of Entomology 47, 561594.CrossRefGoogle ScholarPubMed
van Houten, Y.M., van Rijn, P.C.J., Tanigoshi, L.K., van Stratum, P. & Bruin, J. (1995) Preselection of predatory mites to improve year-round biological control of western flower thrips in greenhouse crops. Entomologia Experimentalis et Applicata 74, 225234.CrossRefGoogle Scholar
van Houten, Y., Ostlie, M.L., Hoogerbrugge, H. & Bolckmans, K. (2005) Biological control of western flower thrips in sweet pepper using the predatory mites Amblyseius cucumeris, Iphiseius degenerans, A. andersoni and A. swirskii. IOBC Bulletin 28, 283286.Google Scholar
Vance-Chalcraft, H.D., Rosenheim, J.A., Vonesh, J.R., Osenberg, C.W. & Sih, A. (2007) The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology 88, 26892696.CrossRefGoogle ScholarPubMed
Walzer, A. & Schausberger, P. (1998) Predation preference and discrimination between con- and heterospecific prey by the phytoseiid mites Phytoseiulus persimilis and Neoseiulus californicus. BioControl 43, 469478.CrossRefGoogle Scholar
Walzer, A. & Schausberger, P. (1999) Cannibalism and interspecific predation in the phytoseiid mites Phytoseiulus persimilis and Neoseiulus californicus: Predation rates and effects on reproduction and juvenile development. Biocontrol 43, 457468.CrossRefGoogle Scholar
Weintraub, P.G., Kleitman, S., Alchanatis, V. & Palevsky, E. (2007) Factors affecting the distribution of a predatory mite on greenhouse sweet pepper. Experimental and Applied Acarology 42, 2335.CrossRefGoogle ScholarPubMed
Wimmer, D., Hoffmann, D. & Schausberger, P. (2008) Prey suitability of western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, for the predatory mite Amblyseius swirskii. Biocontol Science and Technology 18, 541550.Google Scholar
Zannou, I.D., Hanna, R., Moraes, G.J.D. & Kreiter, S. (2005) Cannibalism and interspecific predation in a phytoseiid predator guild from cassava fields in Africa: evidence from the laboratory. Experimental and Applied Acarology 37, 2742.CrossRefGoogle Scholar