Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T18:32:58.288Z Has data issue: false hasContentIssue false

The insecticidal potency of γ-BHC and the chlorinated cyclodiene compounds and the significance of resistance to them

Published online by Cambridge University Press:  10 July 2009

James R. Busvine
Affiliation:
London School of Hygiene and Tropical Medicine

Extract

The insecticidal potencies of γ-BHC and a range of chlorinated cyclodiene compounds have been measured for normal and resistant strains of both Musca domestica L. and Lucilia cuprina (Wied.). Apart from minor discrepancies, the relative potencies presented similar pictures in the two species, and the resistance spectra were also similar.

Moderate to high insecticidal potency is shown by a variety of compounds with a chlorinated bicyclo-heptene nucleus in the molecule, including Diels-Alder condensation products and chlorinated camphenes. Various additions and sub-stituents on the nucleus affect the potency quantitatively but not qualitatively. In contrast, γ-BHC is almost unique among poly-halogenated cyclohexanes.

When resistance develops to any of the chlorinated cyclodiene compounds, it invariably extends to all others and to γ-BHC and chlorinated adamantane. The resistance level, in most cases, is proportional to the original potency of the compound; this is apparently because resistance is usually complete, so that the more toxic compounds have more to lose. There are, however, a few puzzling exceptions.

The consistency of the cross-resistance spectrum to all members of the group implies a common defence mechanism. This suggests a common mode of toxic action, resistance being due to insensitivity at the site. A common mode of action for the cyclodiene series is understandable; the anomalies are γ-BHC and chlorinated adamantane. Their conformity with the cyclodiene insecticides was investigated by the following observations with normal insects: (a) signs of poisoning; (b) relative potency to different species; (c) tests with mixtures. The general conclusions were not unfavourable to the hypothesis of a common mode of action, though secondary features of the intoxication process somewhat complicated the results.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Areekul, S. & Harwood, R. F. (1962). Experimental basis for estimating insecticides and acaricides bv comparative bioassay.—J. econ. Ent. 55 pp. 894899.Google Scholar
Bliss, C. I. (1939). The toxicity of poisons applied jointly.—Ann. appl. Biol. 26 pp. 585615.Google Scholar
Brooks, G. T. (1960). Mechanisms of resistance of the adult housefly (Musca domestica) to ‘ cyclodiene ’ insecticides.—Nature, Lond. 186 no. 4718 pp. 9698.Google Scholar
Brooks, G. T. & Harrison, A. (1963). Relations between structure, metabolism and toxicity of the ‘cyclodiene’ insecticides.—Nature, Lond. 198 no. 4886 pp. 11691171.Google Scholar
Brooks, G. T. & Harrison, A. (1964). Effects of pyrethrum synergists, especially Sesamex, on the insecticidal potency of hexachlorocyclo-pentadiene derivatives (“cyclodiene” insecticides) in the adult housefly. —Biochem. Pharmacol. 13 pp. 827840.CrossRefGoogle Scholar
Busvine, J. R. (1951). Mechanism of resistance to insecticides by houseflies.— Nature, Lond. 168 no. 4266 pp. 193195.Google Scholar
Busvine, J. R. (1953). Forms of insecticide-resistance in houseflies and body lice. Nature, Lond. 171 no. 4342 pp. 118119.Google Scholar
Busvine, J. R. (1954). Houseflies resistant to a group of chlorinated hydrocarbon insecticides.—Nature, Lond. 174 no. 4434 pp. 783784.Google Scholar
Busvine, J. R. (1957). A critical review of the techniques for testing insecticides.—208 pp. London, Commonw. Inst. Ent.Google Scholar
Busvine, J. R. (1962). A laboratory technique for measuring the susceptibility of houseflies and blowflies to insecticides.—Lab. Pract. [11] pp. 464468.Google Scholar
Busvine, J. R., Bell, J. D. & Guneidy, A. M. (1963). Toxicology and genetics of two types of insecticide resistance in Chrysomyia putoria (Wied.).— Bull. ent. Res. 54 pp. 589600.Google Scholar
Busvine, J. R. & Shanahan, G. J. (1961). The resistance spectrum of a dieldrin-resistant strain of the blowfly (Lucilia cuprina Wied.).—Ent. exp. appl. 4 pp. 16.Google Scholar
Busvine, J. R. & Townsend, M. G. (1963). The significance of BHC degradation in resistant house-flies.—Bull. ent. Res. 53 pp. 763768.Google Scholar
Cookson, R. C. & Crundwell, E. (1958). Photochemical isomerization of isodrin.— Chem. & Ind. 1958 p. 1004.Google Scholar
Desalbres, L. & Rache, J. (1948). Les terpénes polychlorés et leurs propriétés insecticides.—Chim. et Industr. 59 pp. 236239.Google Scholar
Dupire, A. & Raucourt, M. (1943). Un insecticide nouveau: l'hexachlorure de benzène.—C.R. Acad. Agric. Fr. 29 pp. 470472.Google Scholar
Finney, D. J. (1952). Probit analysis.—2nd edn, 318 pp. London, Cambridge Univ. Pr.Google Scholar
Gianotti, O., Metcalf, R. L. & March, R. B. (1957). The mode of action of aldrin and dieldrin in Periplaneta amcricana (L.).—Ann. ent. Soc. Amer. 49 (1956) pp. 588592.Google Scholar
Hewlett, P. S. (1963). Toxicological studies on a beetle, Alphitobius laevigatus (F.). V. The joint actions of some pairs of like and unlike toxicants. —Ann. appl. Biol. 52 pp. 351359.Google Scholar
Hewlett, P. S. & Plackett, R. L. (1959). A unified theory for quantal responses to mixtures of drugs: non-interactive action.—Biometrics 15 pp. 591610.Google Scholar
Khanenya, F. S. & Zhuravlev, S. V. (1944). “SK Preparation”. [In Russian.]Z. Mikrobiol., Epidemiol. Immunitatsforsch. 1944 no. 3 p. 67A.Google Scholar
Kearns, C. W., Ingle, L. & Metcalf, R. L. (1945). A new chlorinated hydrocarbon insecticide.—J. econ. Ent. 38 pp. 661668.Google Scholar
Kent, D. L., Hazard, F. O. & Thompson, F. (1953). Strobane.—Soap & Sanit. Chem. 29 no. 6 pp. 157, 159, 161, 163, 177.Google Scholar
Macdonald, G. (1959). The dynamics of resistance to insecticides by anophelines.—Riv. Parassit. 20 pp. 305315.Google Scholar
Metcalf, R. L. & Georghiou, G. P. (1962). Cross tolerances of dieldrin-resistant flies and mosquitos to various cvclodiene insecticides.—Bull. World Hlth Org. 27 pp. 251256.Google Scholar
Mullins, L. J. (1955). Structure-toxicity in hexachlorevclohexane isomers.— Science 122 pp. 118119.Google Scholar
Mullins, L. J. (1956). The structure of nerve cell membranes (molecular structure and functional activity of nerve cells).—Publ. Amer. Inst. Biol. Sci. no. 1 pp. 123166.Google Scholar
Parker, W. L. & Beacher, J. H. (1947). Toxaphene, a chlorinated hydrocarbon, with insecticidal properties.—Bull. Del. agric. Exp. Sta. no. 264, 27 pp.Google Scholar
Perry, A. S., Mattson, A. M. & Buckner, A. J. (1958). The metabolism of heptachlor by resistant and susceptible house flies.—J. econ. Ent. 51 pp. 346351.CrossRefGoogle Scholar
Plackett, R. L. & Hewlett, P. S. (1952). Quantal response to mixtures of poisons.—J. R. statist. Soc. (B) 14 pp. 141163.Google Scholar
Ray, J. W. (1963). Insecticide absorbed by the central nervous system of susceptible and resistant cockroaches exposed to dieldrin.—Nature, Lond. 197 no. 4873 pp. 12261227.Google Scholar
Riemschneider, R. (1950). L'éVolution du “1068”, ou “M410”, ou “chlor-dane”.—Chim. et Industr. 64 pp. 695698.Google Scholar
Riemschneider, R. (1951). Zur Weiterentwicklung der Insektizide der Chlorkoh-lenwasserstoffklasse.—Eucides 11 pp. 373381.Google Scholar
Riemschneider, R. (1955). Konstitution und Wirkung von Insektiziden. Mitt. X. —Z. angew. Ent. 38 pp. 105118.Google Scholar
Riemschneider, R. (1961). Konstitution und Wirkung von Insektiziden. Mitt. XVI.— Z. angew. Ent. 48 pp. 423432.Google Scholar
Riemschneider, R. (1963). The chemistry of the insecticides of the diene group. —World Rev. Pest Contr. 2 pp. 2961.Google Scholar
Riemschneider, R. & Wucherpfennig, V. (1961). Über den raumlichen Bau der Thiodan-Isomeren.—Naturwissenschaften 48 pp. 130131.Google Scholar
Settatree, A. A., Thomas, S. L. & Yardley, V. A. (1950). Molecular models. Nature, Lond. 166 pp. 5960.Google Scholar
Slade, R. E. (1945). The gamma isomer of hexachlorcyclohexane (‘ Gammexane ’).—Chem. & Ind. 40 pp. 314319.Google Scholar
Soboleva, N. I. (1942). The effect of anti-pediculicide “SK” on the vital functions of lice. [In Russian.]Med. Parasitol. 11 pp. 9193.Google Scholar
Soloway, S. B. (1963). Correlation between biological activity and molecular structure of the cyclodiene insecticides.—Vth int. Pesticides Congr., London, 17–23 July 1963. Abstracts, p. 47.Google Scholar
Sun, Yun-Pei & Johnson, E. R. (1960). Analysis of joint action of insecticides against houseflies.—J. econ. Ent. 53 pp. 887892.Google Scholar
Ungnade, H. E. & McBee, E. T. (1958). The chemistry of perchlorocyclo-pentenes and cyclopentadienes.—Chem. Rev. 38 pp. 249320.Google Scholar
Webber, W. C. & Harthoorn, P. A. (1959). Chlorinated and brominated polycyclic hydrocarbons.—Brit. Pat. no. 819,240. (Chem. Abstr. 54 p. 15272.)Google Scholar
Wiesmann, R. (1951). Über einen biologischen Test zum Nachweis und zur Bestimmung von synthetischen Kontaktinsektiziden bei Bienenvergift-ungen.— Z. PflKrankh. 58 pp. 161171.Google Scholar
Winteringham, F. P. W. & Harrison, A. (1959). Mechanisms of resistance of adult houseflies to the insecticide dieldrin.—Nature, Lond. 184 pp. 608610.Google Scholar
Winteringham, F. P. W. & Lewis, S. E. (1959). On the mode of action of insecticides.—Annu. Rev. Ent. 4 pp. 303318.Google Scholar